Entanglement and its

 VerificationNYC Quantum Meetup 9/19/2017
OR HOW I LEARNED TO STOP WORRYING AND LOVE NON-LOCAL THEORIES MUIR KUMPH
IBM RESEARCH 2017

Entanglement is the 'Magic' of Quantum Mechanics

- there is no end of weird and 'new age' descriptions
- all particles in the universe are connected

REVIEWS OF MODERN PHYSICS, VOLUME 81, APRIL-JUNE 2009

- spooky action at a distance (Einstein)
- seems to be needed for exponential speed-up
- today we do it with math
- for a thorough review - see Horodecki et. al

MAY 15, 1935
PHYSICAL REVIEW

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. Einstein, B. Podolsky and N. Rosen, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935)

Quantum entanglement

Ryszard Horodecki

Institute of Theoretical Physics and Astrophysics, University of Gdansk, 80-952 Gdanisk, Poland

Pawet Horodecki
Faculty of Applied Physics and Mathematics, Technical University of Gdanisk, $80-952$ Gdarisk, Poland

Michat Horodecki
Institute of Theoretical Physics and Astrophysics, University of Gdanisk, 80-952 Gdanisk, Poland

Karol Horodecki
Institute of Theoretical Physics and Astrophysics, University of Gdanisk, 80-952 Gdanisk, Poland
and Faculty of Mathematics, Physics and Computer Science, University of Gdanisk, $80-952$ Gdanisk, Poland
(Published 17 June 2009)

Entanglement Verification is Important

- entanglement is necessary (but not sufficient) for an exponential speed-up
- otherwise, the machine cannot be what I would call a 'Quantum Computer'
- eg. D-wave

PHYSICAL REVIEW X 4, 021041 (2014)

Entanglement in a Quantum Annealing Processor

T. Lanting, ${ }^{1+*}$ A. J. Przybysz, ${ }^{1}$ A. Yu. Smirnov, ${ }^{1}$ F. M. Spedalieri, ${ }^{2,3}$ M. H. Amin, ${ }^{1,4}$ A. J. Berkley, ${ }^{1}$ R. Harris, ${ }^{1}$ F. Altomare, ${ }^{\text {, }}$
S. Boixo, ${ }^{2.5}$ P. Bunyk, N. Dickson, ${ }^{1,5}$ C. Enderud, J. P. Hilton, ${ }^{1}$ E. Hoskinson, ${ }^{1}$ M. W. Johnson, ${ }^{1}$ E. Ladizinsky, N. Ladizinsky, R. Neufeld, ${ }^{1}$ T. Oh, I. Perminov, C. Rich, ${ }^{1}$ M. C. Thom, ${ }^{1}$ E. Tolkacheva, ${ }^{1}$ S. Uchaikin, ${ }^{1,6}$
A.B. Wilson, ' and G. Rose ${ }^{\prime}$

- at best it looks like D-Wave built an 8 qubit quantum annealer
- thousand of qubits are just bits if no entanglement can be demonstrated
- when companies claim large numbers of qubits, check to see if they are entangled

What does it mean?

- entangled states can have the property of non-locality
- measuring one part of a system of entangled particles has an effect on the other particles
- 3 qubit system is the simplest system to demonstrate this without resorting to statistics - just need a few measurements

Outline Today

- all the quantum theory necessary to understand 3 qubit entanglement
- introduction to probability
- 2 qubit Bell/CHSH Inequalities

Fundamental Quantum State - Qubit

- when measured - it will be projected into one of two states $|0\rangle$ or $|1\rangle$
- can be in superposition of its states: $\alpha|0\rangle+\beta|1\rangle$
- when the qubit is in a superposition and it is measured
- probability $\mathrm{p}(0)$ that its $|0\rangle$ is $|\alpha|^{2}$
- probability $\mathrm{p}(1)$ that its $|1\rangle$ is $|\beta|^{2}$
(the state must be normalized so that $|\alpha|^{2}+|\beta|^{2}=1$

bras and kets

- kets
- $|0\rangle=\binom{1}{0}$
- $|1\rangle=\binom{0}{1}$
- bras
- $\langle 0|=\left(\begin{array}{ll}1 & 0\end{array}\right)$
- $\langle 1|=\left(\begin{array}{ll}0 & 1\end{array}\right)$
> brakets
- $\langle 0 \mid 0\rangle=1$
- $\langle 1 \mid 1\rangle=1$
- $\langle 0 \mid 1\rangle=0$
- $\langle 1 \mid 0\rangle=0$

Multiqubit States

- any quantum state can be written as a superposition of product states
- product states are essentially just lists of the states of each individual system - also called a tensor product
- $|010\rangle$ is a product of 3 different qubits with the states $|0\rangle|1\rangle$ and $|0\rangle$
- the ordering is implicit
- superposition of these product states can give rise to entanglement
\Rightarrow eg. $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$

Entanglement

- definition: a state which cannot be written as a product state
$>\frac{1}{\sqrt{2}}(|00\rangle+|01\rangle)$ is not an entangled state
- because its $|0+\rangle$, where $|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
$>\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ is entangled

Expectation Values

- measurement of qubits is probabilistic
- a useful quantity is the average (or expected value) of an infinite series of measurements - or ensemble of identical quantum states (see Ergodic theorem)
\checkmark define a measurement operator $Z_{1}=|0\rangle\langle 0|-|1\rangle\langle 1|$
- linear algebra: $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
- expectation of this operator acting on $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ is $\langle\psi| z_{1}|\psi\rangle$
- gives the value $\alpha^{2}-\beta^{2}$
- $\langle 0| z_{1}|0\rangle=1$ or with linear algebra: $\left(\begin{array}{ll}1 & 0\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\binom{1}{0}$
- $\langle 1| z_{1}|1\rangle=-1$

Pop Quiz

- $\quad z_{1}=|0\rangle\langle 0|-|1\rangle\langle 1|$
$\Rightarrow|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$
- what is $\langle+| z_{1}|+\rangle$?
- remember to keep order of bras and kets!
- $\langle+|(|0\rangle\langle 0|-|1\rangle\langle 1|)|+\rangle$
$>\frac{1}{\sqrt{2}}(\langle 0|+\langle 1|)(|0\rangle\langle 0|-|1\rangle\langle 1|) \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$

Bloch Sphere

- qubit state can be depicted on Bloch sphere
- state is represented by the point at the surface
- $|0\rangle$ state is pointing straight up
- its projection along the z axis is equal to 1
- $|1\rangle$ state is pointing straight down
- its projection along the z axis is equal to -1
- $|\psi\rangle=\cos (\theta / 2)|0\rangle+\sin (\theta / 2) e^{i \phi}|1\rangle$

|1)

3 Qubit System

- GHZ (Greenberger-Horne-Zeilinger) state: $\frac{|000\rangle-|111\rangle}{\sqrt{2}}$
- Or if you prefer linear algebra: $\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -\frac{1}{\sqrt{2}}\end{array}\right)$

Expectation of Single Qubit in GHZ

- To avoid measuring a qubit, use the identity operator $J_{1}=|0\rangle\langle 0|+|1\rangle\langle 1|$
- expectation value of first qubit is: $\frac{\langle 000|-\langle 111|}{\sqrt{2}} Z_{1} \mathcal{J}_{2} \mathcal{J}_{3} \frac{|000\rangle-|111\rangle}{\sqrt{2}}=0$
$>Z_{1} \mathcal{J}_{2} \mathcal{J}_{3}=|000\rangle\langle 000|+|001\rangle\langle 001|+|010\rangle\langle 010|+|011\rangle\langle 011|-|100\rangle\langle 100|-|101\rangle\langle 101|-|110\rangle\langle 110|-|111\rangle\langle 111|$
- linear algebra: $\left(\begin{array}{llllllll}\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{1}{\sqrt{2}}\end{array}\right)\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right)\left(\begin{array}{c}\frac{1}{\sqrt{2}} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ -\frac{1}{\sqrt{2}}\end{array}\right)$

Pop Quiz

- compute the expectation value of first qubit: $\frac{\langle 000|-\{111 \mid}{\sqrt{2}} Z_{1} J_{2} J_{3} \frac{|000\rangle-|111\rangle}{\sqrt{2}}=0$
- $Z_{1} J_{2} J_{3}=|000\rangle\langle 000|+|001\rangle\langle 001|+|010\rangle\langle 010|+|011\rangle\langle 011|-|100\rangle\langle 100|-$ $|101\rangle\langle 101|-|110\rangle\langle 110|-|111\rangle\langle 111|$

Expectation Values of Parity Measurement

- Multiply operators together: $z_{1} z_{2} z_{3}$
\Rightarrow linear algebra (Tensor Product) $\left(\begin{array}{cccccccc}1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1\end{array}\right)$

Parity or Combined Expectations

- measuring the parity of the GHZ state in the Z basis now simplifies to:
$-\frac{1}{2}\left(\langle 000| z_{1} z_{2} z_{3}|000\rangle-\langle 111| z_{1} z_{2} z_{3}|000\rangle-\langle 000| z_{1} z_{2} z_{3}|111\rangle+\langle 111| z_{1} z_{2} z_{3}|111\rangle\right)$
- linear algebra notation:

$$
\text { - }(1 / 2)\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
-1
\end{array}\right)
$$

Measuring in Other Basis

$\Rightarrow|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$

- we can measure in the + basis (also called the x_{1} basis)
- $x=|1\rangle\langle 0|+|0\rangle\langle 1|$
- $\mathcal{y}=i|1\rangle\langle 0|-i|0\rangle\langle 1|$

Parity Measurements of the GHZ State

- consider the following measurements on a GHZ state
- $x_{1} y_{2} y_{3}$
- $y_{1} x_{2} y_{3}$
- $y_{1} y_{2} x_{3}$
- for instance:

$$
\begin{aligned}
& \triangleright x_{1} y_{2} y_{3}=-|111\rangle\langle 000|+|110\rangle\langle 001|+|101\rangle\langle 010|-|100\rangle\langle 011|-|011\rangle\langle 100|+ \\
& |010\rangle\langle 101|+|001\rangle\langle 110|-|000\rangle\langle 111| \\
& >\frac{\langle 000|-\langle 111|}{\sqrt{2}} X_{1} y_{2} y_{3} \frac{|000\rangle-|111\rangle}{\sqrt{2}}=1
\end{aligned}
$$

Local Hidden Variable Theories

- imagine there are three people who are given different colored balls, say red green and blue
- without looking at the balls are put into their pockets and they walk far away from each other
- there is an unknown assignment of the colored balls and the people (reality)
- if you ask one person to take out a ball and tell you the color, then the colors of the other balls don't change (local)
- measuring in different basis could be thought of as asking different questions about the balls - like how big is it, or what is it made of?

Locality and Reality of Multi-qubit Systems

- we are about to disprove this! Proof by contradiction
- there should be some sort of hidden value which is revealed by measurement (reality)

- the measurement of say qubit 1 should not change the hidden value of another qubit (locality)

Local and Real Qubits

- we should be able to replace the qubit operators with the hidden (real) value of the measurement
- $m_{x}^{1} m_{y}^{2} m_{y}^{3}$
- $m_{y}^{1} m_{x}^{2} m_{y}^{3}$
- $m_{y}^{1} m_{y}^{2} m_{x}^{3}$
- if these measurements were performed on locally independent qubits, then we could vary the measurements on the other qubits without modifying the result of the one in question.

WHAT'S WRONG WITH THESE ELEMENTS OF REALITY?

N. Dovid Mermin

Parity Measurements of Local Qubits

- each measurement m_{x}^{i}, m_{y}^{i} will return either -1 or 1 ,
- $m_{x}^{1} m_{y}^{2} m_{y}^{3}=1$ (from quantum theory)
- $m_{y}^{1} m_{x}^{2} m_{y}^{3}=1$ (from quantum theory)
- $m_{y}^{1} m_{y}^{2} m_{x}^{3}=1$ (from quantum theory)
- ------------
- $m_{x}^{1} m_{x}^{2} m_{x}^{3}$ should then equal 1 (from local realism)
- multiply through the columns to get the bottom row
- $\left(m_{y}^{i}\right)^{2}=1$

Parity Measurements of Local Qubits

- But measurements of $X_{1} x_{2} x_{3}$ don't return 1
$>x_{1} x_{2} x_{3}=|111\rangle\langle 000|+|110\rangle\langle 001|+|101\rangle\langle 010|+|100\rangle\langle 011|+|011\rangle\langle 100|+$ $|010\rangle\langle 101|+|001\rangle\langle 110|+|000\rangle\langle 111|$
$>\frac{\langle 000|-\langle 111|}{\sqrt{2}} x_{1} x_{2} x_{3} \frac{|000\rangle-|111\rangle}{\sqrt{2}}=-1$

Pop Quiz

- compute the expected value of the $x_{1} x_{2} x_{3}$ measurement on the GHZ state
$>x_{1} x_{2} x_{3}=|111\rangle\langle 000|+|110\rangle\langle 001|+|101\rangle\langle 010|+|100\rangle\langle 011|+|011\rangle\langle 100|+$ $|010\rangle\langle 101|+|001\rangle\langle 110|+|000\rangle\langle 111|$
$>\frac{|000\rangle-|111\rangle}{\sqrt{2}}$

Reality or Locality?

- quantum theory of a GHZ state along with the assumptions of reality and locality lead to a contradiction
- quantum theory: seems to be right
- reality: a cherished concept - that there is one common reality for us all independent of observation made
- locality: has to go
- measurements on one part of a quantum system can change the other parts of the system.

what about less than 3 qubits?

- GHZ states can be hard to create
- 2 qubits are sufficient to demonstrate entanglement
- Bell first notice this in 1969
- Clauser, Horne, Shimony and Holt

Physics Vol. 1, No. 3, pp. 195-200, 1964 Physics Publishing Co. Printed in the United States

ON THE EINSTEIN PODOLSKY ROSEN PARADOX*

J. S. BELL ${ }^{\dagger}$

Department of Physics, University of Wisconsin, Madison, Wisconsin
(Received 4 November 1964)

PROPOSED EXPERIMENT TO TEST LOCAL HIDDEN-VARIABLE THEORIES* John F. Clauser ${ }^{\dagger}$
Department of Physics, Columbla Undversity, New York, New York 10027
and
Michael A. Horne
Departmest of Physics, Boston University, Boston, Massachusetts 02215
and
Abner Shimony
Departments of Philosophy and Physies, Boston University, Boston, Massachusetts 02215
and
Richard A. Holt
Department of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 4 August 1969)

Bell/CHSH Inequalities

- can show a violation of local realism with just two qubits using statistics of the joint expectation value
- in classical statistics, the joint expected value of the product of two measurements A and B is
- $E(a, b)=\int \underline{A}(a, \lambda) \underline{B}(b, \lambda) \rho(\lambda) d \lambda$
- a and b are settings for the measurements (like the measurement basis angle)
- $\underline{A}(a, \lambda) \underline{B}(b, \lambda)$ are the average values of the measurements depending upon the settings a, b, and a hidden unknown variable λ
- $\rho(\lambda)$ is the probability distribution of the unknown variable λ

Probability Distribution Functions (PDF)

- The probability of all possible values of the variable λ must be 1
- $\int \rho(\lambda) d \lambda=1$

probability of finding λ between a and b

Joint Expectation Value

- $E(a, b)=\int \underline{A}(a, \lambda) \underline{B}(b, \lambda) \rho(\lambda) d \lambda$
- these are the results of measurements on the qubits so, $|\underline{A}| \leq 1,|\underline{B}| \leq 1$
- consider the difference between two expectation values with different settings:
- $E(a, b)-E\left(a, b^{\prime}\right)=\int \underline{A}(a, \lambda) \underline{B}(b, \lambda) \rho(\lambda) d \lambda-\int \underline{A}(a, \lambda) \underline{B}\left(b^{\prime}, \lambda\right) \rho(\lambda) d \lambda$
$>=\int\left[\underline{A}(a, \lambda) \underline{B}(b, \lambda)-\underline{A}(a, \lambda) \underline{B}\left(b^{\prime}, \lambda\right)\right] \rho(\lambda) d \lambda$
$>=\int \underline{A}(a, \lambda) \underline{B}(b, \lambda)\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}\left(b^{\prime}, \lambda\right)\right] \rho(\lambda) d \lambda-\int \underline{A}(a, \lambda) \underline{B}\left(b^{\prime}, \lambda\right)\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}(b, \lambda)\right] \rho(\lambda) d \lambda$

Joint Expectation Value

- for any numbers $\mathrm{X}, \mathrm{Y}, \mathrm{Z}: X=Y-Z \rightarrow|X| \leq|Y|+|Z|$
- $E(a, b)-E\left(a, b^{\prime}\right)=\int \underline{A}(a, \lambda) \underline{B}(b, \lambda)\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}\left(b^{\prime}, \lambda\right)\right] \rho(\lambda) d \lambda-\int \underline{A}(a, \lambda) \underline{B}\left(b^{\prime}, \lambda\right)\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}(b, \lambda)\right] \rho(\lambda) d \lambda$
- $\left|E(a, b)-E\left(a, b^{\prime}\right)\right| \leq\left|\int \underline{A}(a, \lambda) \underline{B}(b, \lambda)\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}\left(b^{\prime}, \lambda\right)\right] \rho(\lambda) d \lambda\right|+\mid \int \underline{A}(a, \lambda) \underline{B}\left(b^{\prime}, \lambda\right)[1 \pm$ $\left.\underline{A}\left(a^{\prime}, \lambda\right) \underline{B}(b, \lambda)\right] \rho(\lambda) d \lambda \mid$
- $\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}\left(b^{\prime}, \lambda\right)\right] \rho(\lambda)$ and $\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}(b, \lambda)\right] \rho(\lambda)$ are both positive
$>\leq \int|\underline{A}(a, \lambda) \underline{B}(b, \lambda)|\left|\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}\left(b^{\prime}, \lambda\right)\right] \rho(\lambda) d \lambda\right|+\int\left|\underline{A}(a, \lambda) \underline{B}\left(b^{\prime}, \lambda\right)\right|\left|\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}(b, \lambda)\right] \rho(\lambda) d \lambda\right|$
- $|\underline{A}| \leq 1,|\underline{B}| \leq 1$
- $\left|E(a, b)-E\left(a, b^{\prime}\right)\right| \leq \int\left|\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}\left(b^{\prime}, \lambda\right)\right] \rho(\lambda) d \lambda\right|+\int\left|\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}(b, \lambda)\right] \rho(\lambda) d \lambda\right|$

CHSH inequality

$\Rightarrow\left|E(a, b)-E\left(a, b^{\prime}\right)\right| \leq \int\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}\left(b^{\prime}, \lambda\right)\right] \rho(\lambda) d \lambda+\int\left[1 \pm \underline{A}\left(a^{\prime}, \lambda\right) \underline{B}(b, \lambda)\right] \rho(\lambda) d \lambda$

- $\int \rho(\lambda) d \lambda=1$
- $\left|E(a, b)-E\left(a, b^{\prime}\right)\right| \leq 2 \pm \int\left[\underline{A}\left(a^{\prime}, \lambda\right) \underline{B}\left(b^{\prime}, \lambda\right)\right] \rho(\lambda) d \lambda+\int\left[\underline{A}\left(a^{\prime}, \lambda\right) \underline{B}(b, \lambda)\right] \rho(\lambda) d \lambda$
> $\left|E(a, b)-E\left(a, b^{\prime}\right)\right| \leq 2 \pm\left[E\left(a^{\prime}, b^{\prime}\right)+E\left(a^{\prime}, b\right)\right]$
> $\left|E(a, b)-E\left(a, b^{\prime}\right)\right| \leq 2-\left|E\left(a^{\prime}, b^{\prime}\right)+E\left(a^{\prime}, b\right)\right|$
- $2 \geq\left|E(a, b)-E\left(a, b^{\prime}\right)\right|+\left|E\left(a^{\prime}, b^{\prime}\right)+E\left(a^{\prime}, b\right)\right|$
- $2 \geq\left|E(a, b)-E\left(a, b^{\prime}\right)\right|+\left|E\left(a^{\prime}, b^{\prime}\right)+E\left(a^{\prime}, b\right)\right|$
> $2 \geq\left|E(a, b)-E\left(a, b^{\prime}\right)+E\left(a^{\prime}, b^{\prime}\right)+E\left(a^{\prime}, b\right)\right|$

Checking the Bell Inequality

- Back to Quantum Theory
$>\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)$ is entangled
- we can check to see if it violates the Bell inequality
- first we need to introduce a new type of measurement
- measurement along other directions than just $x_{1} y_{1} z_{1}$

Measurement along Vector

- measurement along a direction in the X-Z plane
- $z_{1}=|0\rangle\langle 0|-|1\rangle\langle 1|$
- $\quad x_{1}=|1\rangle\langle 0|+|0\rangle\langle 1|$
$\Rightarrow A_{1}(a)=\sin (a) X_{1}+\cos (a) z_{1}$

Expected Value Along Vectors

> $A_{1}(a) B_{2}(b)=\sin (a) \sin (b)|11\rangle\langle 00|+\sin (a) \sin (b)|10\rangle\langle 01|+$ $\sin (a) \sin (b)|01\rangle\langle 10|+\sin (a) \sin (b)|00\rangle\langle 11|+\cos (a) \cos (b)|00\rangle\langle 00|-$ $\cos (a) \cos (b)|01\rangle\langle 01|-\cos (a) \cos (b)|10\rangle\langle 10|+\cos (a) \cos (b)|11\rangle\langle 11|+$ $\cos (a) \sin (b)|01\rangle\langle 00|+\sin (a) \cos (b)|10\rangle\langle 00|+\cos (a) \sin (b)|00\rangle\langle 01|-$ $\sin (a) \cos (b)|11\rangle\langle 01|+\sin (a) \cos (b)|00\rangle\langle 10|-\cos (a) \sin (b)|11\rangle\langle 10|-$ $\sin (a) \cos (b)|01\rangle\langle 11|-\cos (a) \sin (b)|10\rangle\langle 11|$
$>\left(\frac{\langle 00|}{\sqrt{2}}+\frac{\langle 11|}{\sqrt{2}}\right) A_{1}(a) B_{2}(b)\left(\frac{|00\rangle}{\sqrt{2}}+\frac{|11\rangle}{\sqrt{2}}\right)=\sin (a) \sin (b)+\cos (a) \cos (b)=\cos (a-b)$

Bell-CHSH quantum mechanics

- $a=\frac{\pi}{2}, a^{\prime}=0, b=\frac{\pi}{4}, b^{\prime}=-\frac{\pi}{4}$
- $E(a, b)=-E\left(a, b^{\prime}\right)=E\left(a^{\prime}, b\right)=E\left(a^{\prime}, b^{\prime}\right)=\frac{1}{\sqrt{2}}$
- $S=E(a, b)-E\left(a, b^{\prime}\right)+E\left(a^{\prime}, b\right)+E\left(a^{\prime}, b^{\prime}\right)=2 \sqrt{2}$
- but from local realism
- $2 \geq\left|E(a, b)-E\left(a, b^{\prime}\right)+E\left(a^{\prime}, b^{\prime}\right)+E\left(a^{\prime}, b\right)\right|$
$>$ since the entanglement witness S is larger than 2, its not locally real!

What we learned

- Entanglement can be verified with Bell states using statistics
- Entanglement can be verified with GHZ states - single shot measurements
- All the quantum theory to describe multi-qubit states
- Multi-qubit parity measurements - the basis for quantum error correction

Next Time

- Explore algorithms which use entanglement for exponential speedup
- Deutsch-Josza
- Shor
- Quantum Chemistry
- Quantum Algorithm for Linear Systems of Equations (Harrow, Hassidim, and Lloyd)

IBM

End of Entanglement and its Verification

