
JANUARY 2018

• Agenda

• Introductions and thanks to Microsoft

• Quantum News 

• Food/Pizza

• Quantum Computing refresher 

• Presentations can be found at github.com/NYCQuantumComputing

• Twitter @NYCQuantum

• Looking for hosts, presenters, topics, suggestions



RECAP 2017
• March 2017 – Kickoff 

• April 2017 – Grover search, IBM’s Quantum Experience, math behind Grover

• May 2017 – Thanks to DWAVE for their technical presentation

• June 2017 – Thanks to Chris Monroe from IONQJ

• July 2017 – Quantum Entanglement 

• September 2017- Bell’s Inequality 

• October 2017 – IBM presented QISKIT 

• November 2017 – Nathan Weibe from Microsoft 

• December 2018 – Shor Discussion 



EDX CLASS STARTING JANUARY 15, 2018 



NEWS / INTERESTING

• “An Introduction to Quantum Computing, Without the Physics” Giacomo 
Nannicini, IBM

• ”Complete 3-Qubit Grover search on a programmable quantum computer”, 
Nature Communications

• “Quantum Computing in the NISQ era and beyond” John Preskill



IDEAS FOR 2018

• Intro class – feedback for agenda, speakers

• Advanced topics (Quantum Machine Learning, Quantum Games, Quantum 
”assist”) 

• An actual application
• SRW: Interconnect Utilization

• Others?



QUANTUM COMPUTING REFRESHER 

• Thanks to Emma Strubell for permission to use her slides! 
• Introduction to Quantum Algorithms

• https://people.cs.umass.edu/~strubell/doc/quantum_tutorial.pdf

• Slides 

• https://people.cs.umass.edu/~strubell/doc/quantum_presentation_1.pdf

• https://people.cs.umass.edu/~strubell/doc/quantum_presentation_2.pdf



Introduction to Quantum Computing
Part I

Emma Strubell

http://cs.umaine.edu/~ema/quantum_tutorial.pdf

April 12, 2011

http://cs.umaine.edu/~ema/quantum_tutorial.pdf
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What is quantum computing? Background

Origins of fame

I Quantum computer first proposed by
Richard Feynman in 1981

I Problem: e�ciently simulating
quantum systems inherently
impossible on a classical computer

I Solution: new machine “built of
quantum mechanical elements which
obey quantum mechanical laws”

I Daniel Simon demonstrates
exponential speedup in 1994

I nobody cares; algorithm too abstract

I Peter Shor demonstrates exciting
exponential speedup in 1997

I based on Simon’s algorithm
I e�ciently factors integers into primes
I this breaks RSA
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What is quantum computing? Caveats
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What is quantum computing? Caveats

Unfortunately, scalable QCs still don’t exist

I As of 2009, quantum computers able to factor 15 into 5 and 3
I The problem is decoherence

I Man-made quantum system wants to interact with surrounding systems
I Sources of interference include electric and magnetic fields required to

power machine itself
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QUANTUM HARDWARE (AND SOFTWARE) 

• IBM Raises the Bar with a 50-Qubit Quantum Computer

• CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy

• Rigetti scalable universal quantum qubits and launching of 36 simulated qubit 
cloud

• Quantum Computing Startup Quantum Circuits Inc (QCI) Accelerates With 
$18M Series A Co-led by Canaan and Sequoia





28R. Rao: Lecture 10 – Quantum Computing

Comparson of Classical versus Quantum Computing

✦ N particles
➭ 2N unique states

✦ Computations are sequential 
➭ Select 1 state
➭ Operate on it
➭ Put it back into memory

✦ Example: N=3
➭ 3 bits
➭ 8 states
➭ Work on one number at a 

time
➧ x = 101

✦ N particles
➭ 2N unique states

✦ Computations occur in parallel
➭ States interact

➧ They are entangled
➭ Operate on all states at once

✦ Example: N=3
➭ 3 qbits
➭ 8 complex amplitudes
➭ Operator manipulates 8 at once

x a b c h
1 000 001 010 111...

Classical Computer Quantum Computer

Þ Exponential Speedup
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Mathematical representation Fundamental di↵erences
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Mathematical representation Fundamental di↵erences

Three main di↵erences from classical computers

1 Superposition
I quantum system exists in all possible states at all times

2 Probabilities
I fortunately, a probability can be associated with each of those states

3 Entanglement
I probabilities of di↵erent states can depend on each other
I quantum teleportation uses this property for cryptographic purposes
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11R. Rao: Lecture 10 – Quantum Computing

The Effect of Measurement

✦ If you measure the quantum system, the qubit (superposition 
of states) collapses to one of the basis states |0> and |1>

✦ c1and c2 are called probability amplitudes because 
probability of getting |0> or |1> upon measurement depends 
on their squared amplitudes: 

✦ Since Prob(|0>) + Prob(|1>) = 1, 

1or0either measure10 21 ®®+= ccx
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25R. Rao: Lecture 10 – Quantum Computing

No Cloning Theorem

✦ There is no unitary transform that allows us to copy a qubit
➭ Proof: Suppose U is a copying matrix: U|c0> = |cc> for all states |c>
➭ Then,

✦ Illustration: Copy a bit using CNOT….yields an entangled state! 
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• A polarizing beam splitter is a device which reflects all light 
of one polarization (say H) and transmits all light of the 
other polarization (say V).

• If light polarized 45° to H and V arrives, half of it is 
reflected and half transmitted.

• If a single photon at 45° arrives, it will be reflected or 
transmitted with 50/50 probability.  We describe such a 
photon as a superposition of H and V: (|H>+|V>)/sqrt(2).

Schrödinger’s Photons



Interference

However, it is not just a simple matter of a photon going one way 
or the other with equal probability.  If we pass the two beams 
through a pair of beamsplitters, we find that the photon can 
recombine in such a way that the probability to go in one 
direction cancels out.  This is interference.
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Mathematical representation Hilbert spaces and Dirac notation

Dirac notation

I Just another way of describing vectors:

v =

2

6664

v0

v1
...

vn

3

7775
= |vi

I and their duals:

hv| = vT =
⇥
v0 v1 . . . vn

⇤

I Convenient for describing vectors in the Hilbert space Cn, the vector
space of quantum mechanics
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Mathematical representation Hilbert spaces and Dirac notation

Cn and the inner product

I A Hilbert space, for our (finite) purposes, is a vector space with an
inner product, and a norm defined by that inner product. We use the
following in Cn:

I The inner product assigns a scalar value to each pair of vectors:

hu|vi = uTv =
⇥
u0 u1 . . . un

⇤

2

6664

v0

v1
...

vn

3

7775
= u0 ·v0+u1 ·v1+. . .+un ·vn

I The norm is the square root of the inner product of a vector with itself
(i.e. Euclidean norm, `2-norm, 2-norm over complex numbers):

k|vik =
p
hv|vi

I Geometrically, this norm gives the distance from the origin to the point
|vi that follows from the Pythagorean theorem.
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Mathematical representation Hilbert spaces and Dirac notation

Properties of the inner product

The inner product satisfies the three following properties:

Definition

1 hv|vi � 0, with hv|vi = 0 if and only if |vi = 0.

2 hu|vi = hv|ui for all |ui, |vi in the vector space.

3 hu|↵0v + ↵1wi = ↵0 hu|vi+ ↵1 hu|wi.
More generally, the inner product of |ui and

P
i
↵i |vii is equal to

P
i
↵i hu|vii for all scalars ↵i and vectors |ui, |vi in the vector space

(this is known as linearity in the second argument).
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Mathematical representation Hilbert spaces and Dirac notation

The outer product

I The outer product is the tensor or Kronecker product of a vector with
the conjugate transpose of another. The result is not a scalar, but a
matrix:

|vi hu| =

2

6664

v0

v1
...

vn

3

7775
⇥
u0 u1 . . . um

⇤
=

2

6664

v0u0 v0u1 . . . v0um

v1u0 v1u1 . . . v1um
...

...
. . .

...
vnu0 vnu1 . . . vnum

3

7775

I Often used to describe a linear transformation between vector spaces.

I A linear transformation from a Hilbert space U to another Hilbert
space V on a vector |wi in U may be succintly described in Dirac
notation:

(|vi hu|) |wi = |vi hu|wi = hu|wi |vi

Since hu|wi is a commutative, scalar value.
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Mathematical representation Hilbert spaces and Dirac notation

The tensor product

I Usually simplified from |ui ⌦ |vi to |ui |vi or |uvi
I A vector tensored with itself n times is denoted |vi⌦n or |vin
I Two column vectors |ui and |vi of lengths m and n yield a column

vector of length m · n when tensored:

|ui |vi = |uvi =

2

6664

u0

u1
...

um

3

7775
⌦

2

6664

v0

v1
...

vn

3

7775
=

2

666666666666666664

u0 · v0

u0 · v1
...

u0 · vn

u1 · v0
...

um�1 · vn

um · v0
...

um · vn

3

777777777777777775
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Mathematical representation The qubit

C2 describes a single quantum bit (qubit)

I A classical bit may be represented as a base-2 number that takes
either the value 1 or the value 0

I Qubits are also base-2 numbers, but in a superposition of the
measurable values 1 and 0

I The state of a qubit at any given time represented as a
two-dimensional state space in C2 with orthonormal basis vectors |1i
and |0i

I The superposition | i of a qubit is represented as a linear
combination of those basis vectors:

| i = a0 |0i+ a1 |1i

Where a0 is the complex scalar amplitude of measuring |0i, and a1

the amplitude of measuring the value |1i.
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Mathematical representation The qubit

Amplitudes, not probabilities

I Amplitudes may be thought of as “quantum probabilities” in that
they represent the chance that a given quantum state will be
observed when the superposition is collapsed

I Most fundamental di↵erence between probabilities of states in
classical probabilistic algorithms and amplitudes: amplitudes are
complex

I Complex numbers required to fully describe superposition of states,
interference or entanglement in quantum systems.1

I As the probabilities of a classical system must sum to 1, so too the
squares of the absolute values of the amplitudes of states in a quantum
system must add up to 1

1See http://www.scottaaronson.com/democritus/lec9.html for a great
discussion by of why complex numbers and the 2-norm are used to describe quantum
mechanical systems
Emma Strubell (University of Maine) Intro to Quantum Computing April 12, 2011 18 / 46
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Mathematical representation The qubit

Amplitudes and the normalization condition

I Just as the hardware underlying the bits of a classical computer may
vary in voltage, quantum systems are not usually so perfectly behaved

I An assumption is made about quantum state vectors called the
normalization conditon: | i is a unit vector.

I k| ik = h | i = 1
I If |0i and |1i are orthonormal, then by orthogonality h0|1i = h1|0i = 0,

and by normality h0|0i = h1|1i = 1
I It follows that |a0|2 + |a1|2 = 1:

1 = h | i
= (a0 h0| + a1 h1|) · (a0 |0i+ a1 |1i)
= |a0|2 h0|0i+ |a1|2 h1|1i+ a1a0 h1|0i+ a0a1 h0|1i
= |a0|2 + |a1|2
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Mathematical representation The qubit

Why we use Dirac notation

The following is equivalent to the last slide:

1 = h | i
= (a0 h0| + a1 h1|) · (a0 |0i+ a1 |1i)

=
�
a0

⇥
 00  01

⇤
+ a1

⇥
 10  11

⇤�
·
✓

a0


 00

 01

�
+ a1


 10

 11

�◆

=
⇥
a0 00 + a1 10 a0 01 + a1 11

⇤
·

a0 00 + a1 10

a0 01 + a1 11

�

= a0 00a0 00 + a1 10a0 00 + a0 00a1 10 + a1 10a1 10

+ a0 01a0 01 + a1 11a0 01 + a0 01a1 11 + a1 11a1 11

= |a0|2
�
| 00|2 + | 01|2

�
+ |a1|2

�
| 10|2 + | 11|2

�

+ a1a0
�
 10 00 +  11 01

�
+ a0a1

�
 00 10 +  01 11

�

= |a0|2 + |a1|2
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Mathematical representation The qubit

The computational basis

I |0i and |1i may be transformed into any two vectors that form an
orthonormal basis in C2

I The most common basis used in quantum computing is called the
computational basis:

|0i =

1
0

�
, |1i =


0
1

�

I The computational basis tends to be the most straightforward basis
for computing and understanding quantum algorithms

I Assume I’m using the computational basis unless otherwise stated

Emma Strubell (University of Maine) Intro to Quantum Computing April 12, 2011 21 / 46



Mathematical representation The qubit

Another basis

I Any other orthonormal basis could be used:

|+i =
|0i+ |1ip

2
=

1p
2


1
1

�
, |�i =

|0i � |1ip
2

=
1p
2


1
�1

�

I Providing a slightly di↵erent but equivalent way of expressing of a
qubit:

| i = a0 |0i+ a1 |1i

= a0
|+i+ |�ip

2
+ a1

|+i � |�ip
2

=
a0 + a1p

2
|+i+

a0 + a1p
2

|�i

I Here, instead of measuring the states |0i and |1i each with respective
probabilities |a0|2 and |a1|2, the states |+i and |�i would be
measured with probabilities |a0 + a1|2/2 and |a0 � a1|2/2.
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Mathematical representation Quantum Registers
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Mathematical representation Quantum Registers

Registers more useful than single qubits

I Each qubit in a quantum register is in a superposition of |1i and |0i
I Consequently, a register of n qubits is in a superposition of all 2n

possible bit strings that could be represented using n bits

I The state space of a size-n quantum register is a linear combination
of n basis vectors, each of length 2n:

| ni =
2n�1X

i=0

ai |ii

I A three-qubit register would thus have the following expansion:

| 2i = a0 |000i+ a1 |001i+ a2 |010i+ a3 |011i
+ a4 |100i+ a5 |101i+ a6 |110i+ a7 |111i
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Mathematical representation Quantum Registers

Registers continued

I Each possible bit configuration in the quantum superposition is
denoted by the tensor product of its counterpart qubits

I Consider |101i, the bit string that represents the integer value 5:

|101i = |1i ⌦ |0i ⌦ |1i

=

0
1

�
⌦


1
0

�
⌦


0
1

�

=
⇥
0 0 0 0 0 1 0 0

⇤T

I As with single qubits, the squared absolute value of the amplitude
associated with a given bit string is the probability of observing that
bit string, and the the sqares of the absolute values of the amplitudes
of all 2n possible bit configuations of an n-bit register sum to unity:

2n�1X

i=0

|ai|2 = 1

Emma Strubell (University of Maine) Intro to Quantum Computing April 12, 2011 25 / 46



Mathematical representation Quantum logic gates
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Mathematical representation Quantum logic gates

Evolving the system: quantum circuits and quantum gates

I One way of thinking about algorithm design and computation is via
quantum Turing machines

I First described by David
Deutsch in 1985, but both a
quantum Turing machine’s tape
and its read-write head exist in
superpositions of an exponential
number states!

I Instead of using the Turing machine as a computational model,
operations on a quantum computer most often described using
quantum circuits (also introduced by Deutsch a few years later)

I Although circuits are computationally equivalent to Turing machines,
they are usually much simpler to depict, manipulate and understand
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Mathematical representation Quantum logic gates

Quantum gates represent unitary transformations

I Quantum gates are represented as transformation matrices, linear
operators applied to a quantum register by tensoring the operator
with the register

I All quantum linear operators must be unitary:
I If a complex matrix U is unitary, then U

�1 = U
†, where U

† is the

conjugate transpose: U
† = U

T

I It follows that UU
† = U

†
U = I

I Unitary operators preserve inner product:

hu|U†
U |vi = hu| I |vi = hu|vi

I The composition of two unitary operators is also unitary:

(UV )† = V
†
U

† = V
�1

U
�1 = (UV )�1
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Mathematical representation Quantum logic gates

The Bloch sphere

x

y

z

|0i

|1i

| i

�

✓

I Unitary transformations performed on a qubit may be visualized as
rotations and reflections about the x, y, and z axes of the Bloch
sphere

I All linear combinations a0 |0i+ a1 |1i in C2 correspond to all the
points (✓, ) on the surface of the unit sphere, where a0 = cos(✓/2)
and a1 = e

i� sin(✓/2) = (cos�+ i sin�) sin ✓
2

Emma Strubell (University of Maine) Intro to Quantum Computing April 12, 2011 29 / 46



Mathematical representation Quantum logic gates

The Hadamard operator

H =
1p
2


1 1
1 �1

�
=

|0i+ |1ip
2

h0| + |0i � |1ip
2

h1|

I Often referred to as a “fair coin flip,” the Hadamard operator applied
to a qubit with the value |0i or |1i will induce an equal superposition
of the states |0i and |1i:

H |0i =
|0i+ |1ip

2
h0|0i+

|0i � |1ip
2

h1|0i =
|0i+ |1ip

2

H |1i =
|0i+ |1ip

2
h0|1i+

|0i � |1ip
2

h1|1i =
|0i � |1ip

2
I Many quantum algorithms begin by applying the Hadamard operator

to each qubit in a register initialized to |0in, which puts the entire
register into an equal superposition of states
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Mathematical representation Quantum logic gates

Bloch sphere representation of the Hadamard operator

I Geometrically, the Hadamard operator performs a rotation of ⇡/2
about the y axis followed by a rotation about the x axis by ⇡ radians
on the Bloch sphere:

x

y

z

|0i

|1i

|0i+|1ip
2

� = 0

✓ = ⇡
2

x

y

z

|0i

|1i

|0i�|1ip
2

� = ⇡

✓ = ⇡
2
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Mathematical representation Quantum logic gates

The Pauli gates

I The three Pauli gates, named after yet another Nobel laureate
Wolfgang Pauli, are also important single-qubit gates for quantum
computation

I The Pauli-X gate swaps the amplitudes of |0i and |1i:

X =

0 1
1 0

�
= |1i h0| + |0i h1|

I The Pauli-Y gate swaps the amplitudes of |0i and |1i, multiplies each
amplitude by i, and negates the amplitude of |1i:

Y =

0 �i

i 0

�
= i |1i h0|� i |0i h1|

I And the Pauli-Z gate negates the amplitude of |1i, leaving the
amplitude of |0i the same:

Z =

1 0
0 �1

�
= |1i h0|� |0i h1|
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Mathematical representation Quantum logic gates

Bloch sphere representation of Pauli-X and -Y gates

I The Pauli-X, -Y, and -Z gates correspond to rotations by ⇡ radians
about the x, y, and z axes respectively on the Bloch sphere

x

y

z

|0i

|1i

� = 0
✓ = ⇡

x

y

z

|0i

i |1i

� = ⇡
2

✓ = ⇡
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Mathematical representation Quantum logic gates

Generalized phase shift

I The Pauli-Z gate, altering only the phase of the system, is a special
case of the more general phase-shift gate, which does not modify the
amplitude of |0i but changes the phase of |1i by a factor of e

i✓ for
any value of ✓:

R✓ =

1 0
0 e

i✓

�
= |1i h0| + e

i✓ |0i h1|

I The Pauli-Z gate is equivalent to the phase-shift gate with ✓ = ⇡.
I Wolfgang Pauli with friends Werner Heisenberg and Enrico Fermi:
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Mathematical representation Quantum logic gates

More phase shift gates

I Another special case of the phase-shift gate where ✓ = ⇡/2 is known
as simply the phase gate, denoted S, which changes the phase of |1i
by a factor of i:

S =

1 0
0 i

�
= |1i h0| + i |0i h1|

I And the phase-shift gate where ✓ = ⇡/4 is referred to as the ⇡/8
gate, or T :

T =

1 0
0 e

i⇡/4

�
= |1i h0| + e

i⇡/4 |0i h1|

With the name ⇡/8 coming from the fact that this transformation
can also be written as a matrix with ⇡/8 along the diagonal:


1 0
0 e

i⇡/4

�
= e

i⇡/8


e
�i⇡/8 0
0 e

i⇡/8

�
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Mathematical representation Quantum logic gates

Controlled operations: CNOT

I Quantum computing also makes use of controlled operations,
multi-qubit operations that change the state of a qubit based on the
values of other qubits

I The quantum controlled-NOT or CNOT gate swaps the amplitudes of
the |0i and |1i basis states of a qubit, equivalent to application of the
Pauli-X gate, only if the controlling qubit has the value |1i:

control |ci • |ci

target |ti ���⌧⇠⇡⇢� |t� ci
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"1. hadamard " MatrixForm[hadamard = (1 / (2^(1 / 2))) {{1, 1}, {1, -1}}]
MatrixForm[identity = {{1, 0}, {0, 1}}]
"2. CNOT operator " MatrixForm[cnot = {{1, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}}]
"3. Tensored Hadamard " MatrixForm[tensored = KroneckerProduct[hadamard, identity]]
cnothadamard2qubit = cnot.tensored
"4. Two qubit H/CNOT operator" MatrixForm[cnothadamard2qubit]
initialstate = {1, 0, 0, 0}
"5.A initial two qubit state is |00> " MatrixForm[initialstate]
"5.B result is a Bell pair " MatrixForm[cnothadamard2qubit.initialstate]
initialstate = {0, 1, 0, 0}
"6.A initial two qubit state is |01> " MatrixForm[initialstate]
"6.B result is a Bell pair " MatrixForm[cnothadamard2qubit.initialstate]
initialstate = {0, 0, 1, 0}
"7.A initial two qubit state is |10> " MatrixForm[initialstate]
"7.B result is a Bell pair " MatrixForm[cnothadamard2qubit.initialstate]
initialstate = {0, 0, 0, 1}
"8.A initial two qubit state is |11> " MatrixForm[initialstate]
"8.B result is a Bell pair " MatrixForm[cnothadamard2qubit.initialstate]
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5.A initial two qubit state is |00>
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5.B result is a Bell pair
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Mathematical representation Quantum logic gates

Generalized controlled operations

I Controlled operations are not restricted to conditional application of
the Pauli-X gate; Any unitary operation may be performed:

control |ci • |ci

target |ti U U
c |ti

I Matrix representation:
2

664

1 0 0 0
0 1 0 0
0 0 x00 x10

0 0 x01 x11

3

775

I Dirac equivalent:

|00i h00| + |01i h01| + x00 |10i h10| + x01 |10i h11|
+ x10 |11i h10| + x11 |11i h11|
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Mathematical representation Quantum logic gates

Controlled operations: To↵oli

I In fact, controlled operations are possible with any number n control
qubits and any unitary operator on k qubits

I The To↵oli gate is probably the best known of these gates

I Also known as the controlled-controlled-NOT gate, the To↵oli gate
acts on three qubits: two control qubits and one target

I If both control qubits are set, then the amplitudes of the target qubit
are flipped:

|c1i • |c1i

|c2i • |c2i

|ti ���⌧⇠⇡⇢� |t� c1 · c2i
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Mathematical representation Quantum logic gates

To↵oli continued

I The To↵oli gate was originally devised as a
universal, reversible classical logic gate by
Tommaso To↵oli

I It is especially interesting because depending on the input, the gate
can perform logical AND, XOR, NOT and FANOUT operations...

I This makes it universal for classical computing!
I Quantum computing is reversible:

I All evolution in a quantum system can be described by unitary
matrices, all unitary transformations are invertible, and thus all
quantum computation is reversible

I The To↵oli gate implies that quantum computation is at least as
powerful as classical computation
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Mathematical representation Computational complexity

Outline

What is quantum computing?
Background
Caveats

Mathematical representation
Fundamental di↵erences
Hilbert spaces and Dirac notation
The qubit
Quantum Registers
Quantum logic gates
Computational complexity
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AARONSON – “THE COMPLEXITY PETTING ZOO"

• Complexity theory analyzes the amount of resources time and/or space to solve a problem
• Theoretical CS usesTuring machines as the basis

• P is the class of problems solved in polynomial time
• ”problem is a decision problem” 

• f(k bits) -> {True, False) that gets solved in TIME(nk)

• PSPACE is P space where Time is unlimited

• EXP is the class of problems solved in TIME(2n^k)
• Examples : Chess 10120 moves

• NP
• EXP problems where a proof exists that that can be checked in polynomial time

• Favorite example : checkmate, factoring a 10000 digit number

• P≠NP, NP-Hard, NP Complete, BQP (Another talk…)

• First 100 pages of Democritus



BIGGER COMPLEXITY ZOO



BIG O CHARTS VIA ERIC ROWELL 



BIG O CHARTS VIA ERIC ROWELL 



Mathematical representation Computational complexity

Classical computational complexity: a review

I To understand the possible power of quantum computing, it helps to
look at the computational power of quantum computers in relation to
their classical counterparts

I Remember that problems in P are decision problems that can be
solved in polynomial time by a deterministic Turing machine

I The equivalent class for space e�ciency is referred to as PSPACE

I NP problems are those that require a nondeterministic Turing
machine in order to be solved e�ciently

I The class of NP-complete problems, abbreviated NPC, consists of the
hardest problems in NP

I Every problem in NP can be reduced to a problem in NPC
I If one NPC problem was found to be in P, then all of the problems in

NP would also be in P, proving P = NP
I Most theoretical computer scientests believe that P 6= NP, but nobody

has been successful in proving the conjecture either way.
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Mathematical representation Computational complexity

Classical probabilistic complexity

I There is another important complexity
class called BPP: Bounded-error
Probabilistic Polynomial time

I BPP describes decision problems that
can be solved in polynomial time by a
probabilistic Turing machine

I Probabilistic Turing machines are those with direct access to some
source of truly random input

I In BPP, the error of the solution is bounded in that the probability
that the answer is correct must be at least two-thirds

I Although there are currently problems solvable in BPP that are not in
P, the number of such problems has been decreasing since the
introduction of BPP in the 1970’s

I While it is not yet been proven whether P ⇢ BPP, it is conjectured
that P = BPP
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Mathematical representation Computational complexity

Quantum computational complexity

I Quantum computation introduces a number of new complexity classes
to the polynomial hierarchy

I Probably the most studied complexity class is Bounded-error
Quantum Polynomial time, or BQP

I BQP is the quantum extension of BPP: the class of decision problems
solvable in polynomial time by an innately probabilistic quantum
Turing machine, with the same error constraint as defined for BPP

I Unlike BPP, it is suspected that P ⇢ BQP, which would mean that
quantum computers are capable of solving some problems in
polynomial time that cannot be solved e�ciently by a classical Turing
machine!
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Mathematical representation Computational complexity

A conjectured polynomial hierarchy

PSPACE

NP

BQP

NPC

P
BPP?

primality testing
graph connectivity
maximum matching
GCD

factoring
discrete logarithm

graph isomorphism

boolean satisfiability
subset sum
traveling salesman
map coloring
n⇥ n sudoku

n⇥ n chess
n⇥ n Go
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ENTANGLEMENT I

by
Robert Nemiroff



Physics X: About This Course

• Officially "Extraordinary Concepts in Physics"
• Being taught for credit at Michigan Tech

o Light on math, heavy on concepts 
o Anyone anywhere is welcome 

• No textbook required
o Wikipedia, web links, and lectures only
o Find all the lectures with Google at:

§ "Starship Asterisk" then "Physics X"
o http://bb.nightskylive.net/asterisk/viewforum.php?f=39



ENTANGLEMENT: OVERVIEW

Two particles can be considered entangled when a quantum state of 
two particles are linked.

Can occur for particles that were
• created at the same place and time.
• collided at some place and time.

Typically involves
• spin
• momentum



ENTANGLEMENT: POSITRONIUM

Positronium
• electron and a positron orbiting
• decays quickly into two daughter photons

Daughter photons of Positronium have
o entangled spins (opposite)
o entangled momenta (opposite)



ENTANGLEMENT: EPR PARADOX

• 1935 paper by Einstein, Podolsky, and Rosen (EPR)
• Thought by EPR to show that

o QM is incomplete
o hidden variables must exist
o otherwise QM "spooky action at a distance"

• origin of "entangled particles" idea
• Basis for Bell's Inequality test of QM versus HV
• QM statistics win



ENTANGLEMENT: EPR PARADOX

• Simple version of EPR experiment:

• A source decays into two particles (entangled)

o one goes to Alice ("A"), the other to Bob ("B")

o the total angular momentum is zero



ENTANGLEMENT: EPR PARADOX

If Alice measures the spin of her particle to be "spin up" on the z-axis, 
will Alice know that Bob will measure his entangled particle to be "spin 
down" on the z-axis before Bob knows it?

1. Yes, Alice is that smart.
2. No, that would require FTL communication.
3. Yes, but only in a statistical sense.
4. Depends on how much Alice is paying her psychic.



ENTANGLEMENT: EPR PARADOX

1. Yes, Alice is that smart.

In fact, 
• If Alice and Bob both measure z axis spin

o will ALWAYS get opposite z spin
• If Alice and Bob both measure x axis spin

o will ALWAYS get opposite x spin



ENTANGLEMENT: EPR PARADOX

Does this, by itself, mean that Alice and Bob can communicate FTL?

1. Yes.
2. No.
3. Maybe so.



ENTANGLEMENT: EPR PARADOX

2. No.

It could be that the particles were created each having opposite 
spins. This could have been done with tennis balls -- this correlation 
requires only conservation of momentum, not FTL 
communication. That particles are created with attributes that are then 
frozen is part of the Hidden Variables (HV) interpretation of quantum 
mechanics.



ENTANGLEMENT: EPR PARADOX

Next, Alice measures her particle as "spin up" on z-axis and Bob 
measures his particle's spin about the x-axis. What spin will Bob 
measure?

1. Spin down, the opposite of Alice.
2. Spin up, the same as Alice.
3. Half the time spin up, half the time spin down.
4. Bob is getting dizzy.



ENTANGLEMENT: EPR PARADOX

3. Half the time spin up, half the time spin down.

Bob measurement is independent of Alice's measurement. Bob cannot 
tell from his measurements that Alice even exists.

Furthermore: Bob will always measure 50/50 no matter what or when 
Alice does her 50/50 measurements. Same with Alice.

Correlations between Alice and Bob can only be found retrospectively.



ENTANGLEMENT: LOCALITY

The principle of locality states that objects can only be affected by their 
immediate surroundings.

Entanglement appears to violate locality but not in such a way that 
allows distant observers to send information to each other faster than 
the speed of light.


