Introduction to Quantum Computing from Math perspective

Pavel Belevich

New York Quantum Computing Meetup

March 28, 2018

What is qubit?

Definition

A qubit is a unit vector in two dimensional space of complex numbers $% \left({{{\bf{n}}_{{\rm{s}}}}_{{\rm{s}}}} \right)$

Examples

$$\begin{pmatrix}
\frac{3}{5} \\
\frac{4}{5}
\end{pmatrix}, \begin{pmatrix}
\frac{1}{\sqrt{2}} \\
\frac{-i}{\sqrt{2}}
\end{pmatrix}, \begin{pmatrix}
-1 \\
0
\end{pmatrix}, \begin{pmatrix}
0 \\
i
\end{pmatrix}, \begin{pmatrix}
\frac{2-3i}{\sqrt{54}} \\
\frac{4+5i}{\sqrt{54}}
\end{pmatrix}$$
or any $|v\rangle = a|0\rangle + b|1\rangle = \begin{pmatrix}a \\
b
\end{pmatrix}, s.t.|a|^2 + |b|^2 = 1$

$$\label{eq:norm} \frac{\text{Note}}{|0\rangle \ = \ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \ \text{and} \ |1\rangle \ = \ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \ \text{are pure states, corresponded to} \\ \text{classical bit values "0" and "1"}.$$

Pavel Belevich

What is qubit?

Pavel Belevich

Tossing $\mathsf{coin}(``0"$ is head, ``1" is tail) is a perfect analogy of superposition state

Until it's stopped by observer it is in 50% of "0" and 50% of "1" state

We need something that is between "0" and "1" or rather something that is partially "0" and partially "1"

Gates

Q: If we have only unit vectors what can we do with them? A: Rotate! If we can't change vector length then any transformation is just a rotation

NOT gate rotates $|0\rangle$ to Hada $|1\rangle$ and vise versa $|0\rangle$ to $|0\rangle$ to

Hadamard gate rotates $|0\rangle$ to $|+\rangle$ and vise versa

Pavel Belevich

Quantum computing "Hello world"?

Tossing coin

- 1. Take a coin
- 2. Toss it
- 3. Catch it
- 4. Obtain random value "head" or "tail"

Tossing coin program

- 1. Take a qubit in pure $|0\rangle$ state
- 2. Apply Hadamard gate to get superposition $\left|+\right\rangle$ state
- 3. Measure it
- 4. Obtain random value "0" or "1"

Pavel Belevich

NOT Gate

How should NOT Gate X look like if we know that:

$$X \ket{0} = \ket{1}$$
 (1)

$$X \left| 1 \right\rangle = \left| 0 \right\rangle$$
 (2)

In other words what can rotate vector $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ into vector $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and vise versa?

$$X |0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$$
(3)
$$\begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} = |1\rangle$$

$$X |1\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} = |0\rangle$$
(4)

So Gate NOT is a matrix

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
(5)

Pavel Belevich

NOT Gate

Pavel Belevich

Hadamard Gate

Consider matrix
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 and let's apply it to $|0\rangle$ and $|1\rangle$:
 $H|0\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = |+\rangle$ (6)
 $H|1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = |-\rangle$ (7)

Now let's apply H to to $|+\rangle$ and $|-\rangle$:

$$H|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 2\\ 0 \end{pmatrix} = \begin{pmatrix} 1\\ 0 \end{pmatrix} = |0\rangle \qquad (8)$$

$$H \left| -\right\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 0\\ 2 \end{pmatrix} = \begin{pmatrix} 0\\ 1 \end{pmatrix} = \left| 1 \right\rangle \quad (9)$$

Pavel Belevich

Hadamard Gate

Pavel Belevich

What do we know so far?

- ► A qubit is a vector, its projections to "0" and "1" axes represent how likely this qubit is "0" and "1"
- We can pass a qubit through some gates that "rotate" it and changes projections to "0" and "1" axes
- A gate is a matrix, applying the gate matrix to a qubit vector "rotates" the qubit
- We can measure a qubit and it becomes either 0 or 1 depending on it's projections to "0" and "1" axes
- Measurement gives us a natural random mechanism
- ► Hadamard Gate H rotates |0⟩ to superposition state |+⟩, which has equal projections to "0" and "1" axis
- \blacktriangleright NOT Gate X rotates $|0\rangle$ to $|1\rangle$ and $|1\rangle$ to $|0\rangle$
- We can write two stupid 1-qubit programs: 1) 0/1 random generator 2) negation program

What about two qubits?

Consider two qubits:

$$|p\rangle = a |0_{p}\rangle + b |1_{p}\rangle \tag{10}$$

$$|q\rangle = c |0_q\rangle + d |1_q\rangle \tag{11}$$

What if we multiply them?

 $\begin{aligned} |p\rangle \otimes |q\rangle &= ac |0_p\rangle \otimes |0_q\rangle + ad |0_p\rangle \otimes |1_q\rangle + bc |1_p\rangle \otimes |0_q\rangle + bd |1_p\rangle \otimes |1_q\rangle \\ (12) \end{aligned}$ Let's define the following notation:

$$|v\rangle \otimes |w\rangle = |vw\rangle \tag{13}$$

$$pq\rangle = ac \left|0_{p}0_{q}\right\rangle + ad \left|0_{p}1_{q}\right\rangle + bc \left|1_{p}0_{q}\right\rangle + bd \left|1_{p}1_{q}\right\rangle$$
(14)

Or

$$|pq\rangle = ac |00\rangle + ad |01\rangle + bc |10\rangle + bd |11\rangle$$
 (15)

Pavel Belevich

What about two qubits?

lf

$$|a|^{2} = Prob(p = 0)$$

 $|b|^{2} = Prob(p = 1)$
 $|c|^{2} = Prob(q = 0)$
 $|d|^{2} = Prob(q = 1)$

then

$$|ac|^{2} = Prob(p = 0)*Prob(q = 0) = Prob(p = 0; q = 0) = Prob(00)$$

 $|ad|^{2} = Prob(p = 0)*Prob(q = 1) = Prob(p = 0; q = 1) = Prob(01)$
 $|bc|^{2} = Prob(p = 1)*Prob(q = 0) = Prob(p = 1; q = 0) = Prob(10)$
 $|bd|^{2} = Prob(p = 1)*Prob(q = 1) = Prob(p = 1; q = 1) = Prob(11)$
We can describe 2 qubits using 4 dimensional vector in the
 $(|00\rangle, |01\rangle, |10\rangle, |11\rangle)$ basis.

Pavel Belevich

How do two-qubit vectors look like?

Pavel Belevich

How do two-qubit vectors look like?

$$|p\rangle = a |0\rangle + b |1\rangle = a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$
 (20)

$$|q\rangle = c |0\rangle + d |1\rangle = c \begin{pmatrix} 1 \\ 0 \end{pmatrix} + d \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} c \\ d \end{pmatrix}$$
 (21)

$$|pq\rangle = |p\rangle \otimes |q\rangle = ac |00\rangle + ad |01\rangle + bc |10\rangle + bd |11\rangle =$$
(22)
$$= ac \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} + ad \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} + bc \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} + bd \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$
(23)
$$= \begin{pmatrix} ac\\ad\\bc\\bd \end{pmatrix}$$
(24)

Pavel Belevich

What the ... does it mean???

N qubits can represent 2^N numbers s.t. each number squared is a probability of getting one of 2^N N-bit string.

$$\begin{split} |+\rangle &= H |0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle) \\ |++\rangle &= H^{\otimes 2} |00\rangle = \frac{1}{\sqrt{2^2}} (|00\rangle + |01\rangle + |10\rangle + |11\rangle) \\ |+++\rangle &= H^{\otimes 3} |000\rangle = \frac{1}{\sqrt{2^3}} (|000\rangle + |001\rangle + \dots + |110\rangle + |111\rangle) \end{split}$$

$$\begin{split} |+++++++\rangle &= H^{\otimes 8} \left| 0000000 \right\rangle \\ &= \frac{1}{\sqrt{2^8}} (|0000000\rangle + |0000001\rangle + ... + |1111110\rangle + |1111111\rangle \\ \end{split}$$

Imagine you write a program that has 1 byte input. You need to call it 256 times to get the result for each possible 8 bit number. If you have 8-qubit quantum computer you can construct an initial state that have equal probabilities of each of 256 8-bit string and call it only ONCE.

Pavel Belevich

CNOT gate

Where I =

Consider the following matrix:

$$CNOT = \begin{pmatrix} I & 0 \\ 0 & X \end{pmatrix} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, O = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
(25)

Let's apply CNOT to $|00\rangle$, $|01\rangle$, $|10\rangle$, $|11\rangle$:

$$CNOT |00\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = |00\rangle$$
(26)
$$CNOT |01\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = |01\rangle$$
(27)
$$CNOT |10\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = |11\rangle$$
(28)
$$CNOT |11\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} = |10\rangle$$
(29)

As you can see if the first qubit is 0, CNOT does not change qubits, but if the first qubit is 1 it inverts

the second one. This CNOT gate is Conditional NOT gate.

Pavel Belevich

CNOT gate

Consider flipped CNOT gate which inverts the first qubit if the second is equal to 1. How should CNOT' look like?

$$CNOT' = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$
(34)

Therefore flipped CNOT gate is

Pavel Belevich

SWAP gate

What if we apply CNOT, flipped CNOT and CNOT consequently?

Figure: SWAP circuit [I. Chuang(2004b)]

$$SW\!AP = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(35)

Pavel Belevich

SWAP gate

Let's apply SWAP to $|00\rangle,~|01\rangle,~|10\rangle,~|11\rangle:$

$$SWAP |00\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = |00\rangle$$
(36)
$$SWAP |01\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = |10\rangle$$
(37)
$$SWAP |10\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} = |01\rangle$$
(38)
$$SWAP |11\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} = |01\rangle$$
(39)

Pavel Belevich

Creating Bell state

Consider two qubits and let's apply H to the first and CNOT to both:

Figure: EPR Creation [I. Chuang(2004a)]

$$CNOT(H \otimes I) |00\rangle = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \otimes \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

Pavel Belevich

Applying N Hadamard gates to N qubits constructs a superposition state corresponding to 2^N numbers which is the initial step of most quantum algorithms.

Hadamard-CNOT two-qubits gate creates Bell state, which is crucial for quantum teleportation.

Applying CNOT, flipped CNOT and again CNOT swaps two qubits, which is used in Quantum Fourier transform.

References

Thank you!

Pavel Belevich