
Mathematical representation Quantum logic gates

Evolving the system: quantum circuits and quantum gates

I One way of thinking about algorithm design and computation is via
quantum Turing machines

I First described by David
Deutsch in 1985, but both a
quantum Turing machine’s tape
and its read-write head exist in
superpositions of an exponential
number states!

I Instead of using the Turing machine as a computational model,
operations on a quantum computer most often described using
quantum circuits (also introduced by Deutsch a few years later)

I Although circuits are computationally equivalent to Turing machines,
they are usually much simpler to depict, manipulate and understand
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Quantum gates represent unitary transformations

I Quantum gates are represented as transformation matrices, linear
operators applied to a quantum register by tensoring the operator
with the register

I All quantum linear operators must be unitary:
I If a complex matrix U is unitary, then U

�1 = U
†, where U

† is the

conjugate transpose: U
† = U

T

I It follows that UU
† = U

†
U = I

I Unitary operators preserve inner product:

hu|U†
U |vi = hu| I |vi = hu|vi

I The composition of two unitary operators is also unitary:

(UV )† = V
†
U

† = V
�1

U
�1 = (UV )�1
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The Bloch sphere
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I Unitary transformations performed on a qubit may be visualized as
rotations and reflections about the x, y, and z axes of the Bloch
sphere

I All linear combinations a0 |0i+ a1 |1i in C2 correspond to all the
points (✓, ) on the surface of the unit sphere, where a0 = cos(✓/2)
and a1 = e

i� sin(✓/2) = (cos�+ i sin�) sin ✓
2
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The Hadamard operator

H =
1p
2


1 1
1 �1

�
=

|0i+ |1ip
2

h0| + |0i � |1ip
2

h1|

I Often referred to as a “fair coin flip,” the Hadamard operator applied
to a qubit with the value |0i or |1i will induce an equal superposition
of the states |0i and |1i:

H |0i =
|0i+ |1ip

2
h0|0i+

|0i � |1ip
2

h1|0i =
|0i+ |1ip

2

H |1i =
|0i+ |1ip

2
h0|1i+

|0i � |1ip
2

h1|1i =
|0i � |1ip

2
I Many quantum algorithms begin by applying the Hadamard operator

to each qubit in a register initialized to |0in, which puts the entire
register into an equal superposition of states
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Bloch sphere representation of the Hadamard operator

I Geometrically, the Hadamard operator performs a rotation of ⇡/2
about the y axis followed by a rotation about the x axis by ⇡ radians
on the Bloch sphere:
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The Pauli gates

I The three Pauli gates, named after yet another Nobel laureate
Wolfgang Pauli, are also important single-qubit gates for quantum
computation

I The Pauli-X gate swaps the amplitudes of |0i and |1i:

X =

0 1
1 0

�
= |1i h0| + |0i h1|

I The Pauli-Y gate swaps the amplitudes of |0i and |1i, multiplies each
amplitude by i, and negates the amplitude of |1i:

Y =

0 �i

i 0

�
= i |1i h0|� i |0i h1|

I And the Pauli-Z gate negates the amplitude of |1i, leaving the
amplitude of |0i the same:

Z =

1 0
0 �1

�
= |1i h0|� |0i h1|
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Bloch sphere representation of Pauli-X and -Y gates

I The Pauli-X, -Y, and -Z gates correspond to rotations by ⇡ radians
about the x, y, and z axes respectively on the Bloch sphere
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Generalized phase shift

I The Pauli-Z gate, altering only the phase of the system, is a special
case of the more general phase-shift gate, which does not modify the
amplitude of |0i but changes the phase of |1i by a factor of e

i✓ for
any value of ✓:

R✓ =

1 0
0 e

i✓

�
= |1i h0| + e

i✓ |0i h1|

I The Pauli-Z gate is equivalent to the phase-shift gate with ✓ = ⇡.
I Wolfgang Pauli with friends Werner Heisenberg and Enrico Fermi:
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More phase shift gates

I Another special case of the phase-shift gate where ✓ = ⇡/2 is known
as simply the phase gate, denoted S, which changes the phase of |1i
by a factor of i:

S =

1 0
0 i

�
= |1i h0| + i |0i h1|

I And the phase-shift gate where ✓ = ⇡/4 is referred to as the ⇡/8
gate, or T :

T =

1 0
0 e

i⇡/4

�
= |1i h0| + e

i⇡/4 |0i h1|

With the name ⇡/8 coming from the fact that this transformation
can also be written as a matrix with ⇡/8 along the diagonal:


1 0
0 e

i⇡/4

�
= e

i⇡/8


e
�i⇡/8 0
0 e

i⇡/8

�
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Controlled operations: CNOT

I Quantum computing also makes use of controlled operations,
multi-qubit operations that change the state of a qubit based on the
values of other qubits

I The quantum controlled-NOT or CNOT gate swaps the amplitudes of
the |0i and |1i basis states of a qubit, equivalent to application of the
Pauli-X gate, only if the controlling qubit has the value |1i:

control |ci • |ci

target |ti ���⌧⇠⇡⇢� |t� ci
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Generalized controlled operations

I Controlled operations are not restricted to conditional application of
the Pauli-X gate; Any unitary operation may be performed:

control |ci • |ci

target |ti U U
c |ti

I Matrix representation:
2

664

1 0 0 0
0 1 0 0
0 0 x00 x10

0 0 x01 x11

3

775

I Dirac equivalent:

|00i h00| + |01i h01| + x00 |10i h10| + x01 |10i h11|
+ x10 |11i h10| + x11 |11i h11|
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Controlled operations: To↵oli

I In fact, controlled operations are possible with any number n control
qubits and any unitary operator on k qubits

I The To↵oli gate is probably the best known of these gates

I Also known as the controlled-controlled-NOT gate, the To↵oli gate
acts on three qubits: two control qubits and one target

I If both control qubits are set, then the amplitudes of the target qubit
are flipped:

|c1i • |c1i

|c2i • |c2i

|ti ���⌧⇠⇡⇢� |t� c1 · c2i
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To↵oli continued

I The To↵oli gate was originally devised as a
universal, reversible classical logic gate by
Tommaso To↵oli

I It is especially interesting because depending on the input, the gate
can perform logical AND, XOR, NOT and FANOUT operations...

I This makes it universal for classical computing!
I Quantum computing is reversible:

I All evolution in a quantum system can be described by unitary
matrices, all unitary transformations are invertible, and thus all
quantum computation is reversible

I The To↵oli gate implies that quantum computation is at least as
powerful as classical computation
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