## Dirac notation

- Just another way of describing vectors:

$$
\mathbf{v}=\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=|\mathbf{v}\rangle
$$

- and their duals:

$$
\langle\mathbf{v}|=\overline{\mathbf{v}^{\mathrm{T}}}=\left[\begin{array}{llll}
\overline{v_{0}} & \overline{v_{1}} & \ldots & \overline{v_{n}}
\end{array}\right]
$$

- Convenient for describing vectors in the Hilbert space $\mathbb{C}^{n}$, the vector space of quantum mechanics


## $\mathbb{C}^{n}$ and the inner product

- A Hilbert space, for our (finite) purposes, is a vector space with an inner product, and a norm defined by that inner product. We use the following in $\mathbb{C}^{n}$ :
- The inner product assigns a scalar value to each pair of vectors:

$$
\langle\mathbf{u} \mid \mathbf{v}\rangle=\overline{\mathbf{u}^{\mathrm{T}}} \mathbf{v}=\left[\begin{array}{llll}
\overline{u_{0}} & \overline{u_{1}} & \ldots & \overline{u_{n}}
\end{array}\right]\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\overline{u_{0}} \cdot v_{0}+\overline{u_{1}} \cdot v_{1}+\ldots+\overline{u_{n}} \cdot v_{n}
$$

- The norm is the square root of the inner product of a vector with itself (i.e. Euclidean norm, $\ell^{2}$-norm, 2-norm over complex numbers):

$$
\||\mathbf{v}\rangle \|=\sqrt{\langle\mathbf{v} \mid \mathbf{v}\rangle}
$$

- Geometrically, this norm gives the distance from the origin to the point $|\mathbf{v}\rangle$ that follows from the Pythagorean theorem.


## Properties of the inner product

The inner product satisfies the three following properties:
Definition
$\mathbf{1}\langle\mathbf{v} \mid \mathbf{v}\rangle \geq 0$, with $\langle\mathbf{v} \mid \mathbf{v}\rangle=0$ if and only if $|\mathbf{v}\rangle=\mathbf{0}$.
$\mathbf{2}\langle\mathbf{u} \mid \mathbf{v}\rangle=\overline{\langle\mathbf{v} \mid \mathbf{u}\rangle}$ for all $|\mathbf{u}\rangle,|\mathbf{v}\rangle$ in the vector space.
$3\left\langle\mathbf{u} \mid \alpha_{0} \mathbf{v}+\alpha_{1} \mathbf{w}\right\rangle=\alpha_{0}\langle\mathbf{u} \mid \mathbf{v}\rangle+\alpha_{1}\langle\mathbf{u} \mid \mathbf{w}\rangle$.
More generally, the inner product of $|\mathbf{u}\rangle$ and $\sum_{i} \alpha_{i}\left|\mathbf{v}_{i}\right\rangle$ is equal to
$\sum_{i} \alpha_{i}\left\langle\mathbf{u} \mid \mathbf{v}_{i}\right\rangle$ for all scalars $\alpha_{i}$ and vectors $|\mathbf{u}\rangle,|\mathbf{v}\rangle$ in the vector space
(this is known as linearity in the second argument).

## The outer product

- The outer product is the tensor or Kronecker product of a vector with the conjugate transpose of another. The result is not a scalar, but a matrix:

$$
|\mathbf{v}\rangle\langle\mathbf{u}|=\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]\left[\begin{array}{llll}
\overline{u_{0}} & \overline{u_{1}} & \ldots & \overline{u_{m}}
\end{array}\right]=\left[\begin{array}{cccc}
v_{0} \overline{u_{0}} & v_{0} \overline{u_{1}} & \ldots & v_{0} \overline{u_{m}} \\
v_{1} \overline{u_{0}} & v_{1} \overline{u_{1}} & \ldots & v_{1} \overline{u_{m}} \\
\vdots & \vdots & \ddots & \vdots \\
v_{n} \overline{u_{0}} & v_{n} \overline{u_{1}} & \ldots & v_{n} \overline{u_{m}}
\end{array}\right]
$$

- Often used to describe a linear transformation between vector spaces.
- A linear transformation from a Hilbert space $U$ to another Hilbert space $V$ on a vector $|\mathbf{w}\rangle$ in $U$ may be succintly described in Dirac notation:

$$
(|\mathbf{v}\rangle\langle\mathbf{u}|)|\mathbf{w}\rangle=|\mathbf{v}\rangle\langle\mathbf{u} \mid \mathbf{w}\rangle=\langle\mathbf{u} \mid \mathbf{w}\rangle|\mathbf{v}\rangle
$$

Since $\langle\mathbf{u} \mid \mathbf{w}\rangle$ is a commutative, scalar value.

## The tensor product

- Usually simplified from $|\mathbf{u}\rangle \otimes|\mathbf{v}\rangle$ to $|\mathbf{u}\rangle|\mathbf{v}\rangle$ or $|\mathbf{u v}\rangle$
- A vector tensored with itself $n$ times is denoted $|\mathbf{v}\rangle^{\otimes n}$ or $|\mathbf{v}\rangle^{n}$
- Two column vectors $|\mathbf{u}\rangle$ and $|\mathbf{v}\rangle$ of lengths $m$ and $n$ yield a column vector of length $m \cdot n$ when tensored:

$$
|\mathbf{u}\rangle|\mathbf{v}\rangle=|\mathbf{u v}\rangle=\left[\begin{array}{c}
u_{0} \\
u_{1} \\
\vdots \\
u_{m}
\end{array}\right] \otimes\left[\begin{array}{c}
v_{0} \\
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
u_{0} \cdot v_{0} \\
u_{0} \cdot v_{1} \\
\vdots \\
u_{0} \cdot v_{n} \\
u_{1} \cdot v_{0} \\
\vdots \\
u_{m-1} \cdot v_{n} \\
u_{m} \cdot v_{0} \\
\vdots \\
u_{m} \cdot v_{n}
\end{array}\right]
$$

$\mathbb{C}^{2}$ describes a single quantum bit (qubit)

- A classical bit may be represented as a base-2 number that takes either the value 1 or the value 0
- Qubits are also base-2 numbers, but in a superposition of the measurable values 1 and 0
- The state of a qubit at any given time represented as a two-dimensional state space in $\mathbb{C}^{2}$ with orthonormal basis vectors $|1\rangle$ and $|0\rangle$
- The superposition $|\psi\rangle$ of a qubit is represented as a linear combination of those basis vectors:

$$
|\psi\rangle=a_{0}|0\rangle+a_{1}|1\rangle
$$

Where $a_{0}$ is the complex scalar amplitude of measuring $|0\rangle$, and $a_{1}$ the amplitude of measuring the value $|1\rangle$.

## Amplitudes, not probabilities

- Amplitudes may be thought of as "quantum probabilities" in that they represent the chance that a given quantum state will be observed when the superposition is collapsed
- Most fundamental difference between probabilities of states in classical probabilistic algorithms and amplitudes: amplitudes are complex
- Complex numbers required to fully describe superposition of states, interference or entanglement in quantum systems. ${ }^{1}$
- As the probabilities of a classical system must sum to 1 , so too the squares of the absolute values of the amplitudes of states in a quantum system must add up to 1

[^0]
## Amplitudes and the normalization condition

- Just as the hardware underlying the bits of a classical computer may vary in voltage, quantum systems are not usually so perfectly behaved
- An assumption is made about quantum state vectors called the normalization conditon: $|\psi\rangle$ is a unit vector.
- $\||\psi\rangle \|=\langle\psi \mid \psi\rangle=1$
- If $|0\rangle$ and $|1\rangle$ are orthonormal, then by orthogonality $\langle 0 \mid 1\rangle=\langle 1 \mid 0\rangle=0$, and by normality $\langle 0 \mid 0\rangle=\langle 1 \mid 1\rangle=1$
- It follows that $\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}=1$ :

$$
\begin{aligned}
1 & =\langle\psi \mid \psi\rangle \\
& =\left(\overline{a_{0}}\langle 0|+\overline{a_{1}}\langle 1|\right) \cdot\left(a_{0}|0\rangle+a_{1}|1\rangle\right) \\
& =\left|a_{0}\right|^{2}\langle 0 \mid 0\rangle+\left|a_{1}\right|^{2}\langle 1 \mid 1\rangle+\overline{a_{1}} a_{0}\langle 1 \mid 0\rangle+\overline{a_{0}} a_{1}\langle 0 \mid 1\rangle \\
& =\left|a_{0}\right|^{2}+\left|a_{1}\right|^{2}
\end{aligned}
$$

## Why we use Dirac notation

The following is equivalent to the last slide:

$$
\begin{aligned}
1= & \langle\psi \mid \psi\rangle \\
= & \left(\overline{a_{0}}\langle 0|+\overline{a_{1}}\langle 1|\right) \cdot\left(a_{0}|0\rangle+a_{1}|1\rangle\right) \\
= & \left(\overline { a _ { 0 } } \left[\overline{\psi_{00}}\right.\right. \\
\left.\overline{\psi_{01}}\right]+\overline{a_{1}}\left[\overline{\psi_{10}}\right. & \left.\left.\overline{\psi_{11}}\right]\right) \cdot\left(\begin{array}{l}
\left.a_{0}\left[\begin{array}{l}
\psi_{00} \\
\psi_{01}
\end{array}\right]+a_{1}\left[\begin{array}{l}
\psi_{10} \\
\psi_{11}
\end{array}\right]\right) \\
= \\
=\left[\overline{a_{0} \psi_{00}}+\overline{a_{1} \psi_{10}} \overline{a_{0} \psi_{01}}+\overline{a_{1} \psi_{11}}\right] \cdot\left[\begin{array}{l}
a_{0} \psi_{00}+a_{1} \psi_{10} \\
a_{0} \psi_{01}+a_{1} \psi_{11}
\end{array}\right] \\
= \\
=\overline{a_{0} \psi_{00} a_{0} \psi_{00}+\overline{a_{1} \psi_{10}} a_{0} \psi_{00}+\overline{a_{0} \psi_{00}} a_{1} \psi_{10}+\overline{a_{1} \psi_{10}} a_{1} \psi_{10}} \\
\\
=\overline{a_{0} \psi_{01}} a_{0} \psi_{01}+\overline{a_{1} \psi_{11}} a_{0} \psi_{01}+\overline{a_{0} \psi_{01} a_{1} \psi_{11}+\overline{a_{1} \psi_{11}} a_{1} \psi_{11}} \\
= \\
=\left|a_{0}\right|^{2}\left(\left|\psi_{00}\right|^{2}+\left|\psi_{01}\right|^{2}\right)+\left|a_{1}\right|^{2}\left(\left|\psi_{10}\right|^{2}+\left|\psi_{11}\right|^{2}\right) \\
\\
\\
=\mid \overline{a_{1}} a_{0}\left(\overline{\psi_{10}} \psi_{00}+\overline{\psi_{11} \psi_{01}}\right)+\overline{a_{0}} a_{1}\left(\overline{\psi_{00} \psi_{10}}+\overline{\psi_{01}} \psi_{11}\right)
\end{array}\right.
\end{aligned}
$$

## The computational basis

- $|0\rangle$ and $|1\rangle$ may be transformed into any two vectors that form an orthonormal basis in $\mathbb{C}^{2}$
- The most common basis used in quantum computing is called the computational basis:

$$
|0\rangle=\left[\begin{array}{l}
1 \\
0
\end{array}\right],|1\rangle=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

- The computational basis tends to be the most straightforward basis for computing and understanding quantum algorithms
- Assume I'm using the computational basis unless otherwise stated


## Another basis

- Any other orthonormal basis could be used:
- Providing a slightly different but equivalent way of expressing of a qubit:

$$
\begin{aligned}
|\psi\rangle & =a_{0}|0\rangle+a_{1}|1\rangle \\
& =a_{0} \frac{|+\rangle+|-\rangle}{\sqrt{2}}+a_{1} \frac{|+\rangle-|-\rangle}{\sqrt{2}} \\
& =\frac{a_{0}+a_{1}}{\sqrt{2}}|+\rangle+\frac{a_{0}+a_{1}}{\sqrt{2}}|-\rangle
\end{aligned}
$$

- Here, instead of measuring the states $|0\rangle$ and $|1\rangle$ each with respective probabilities $\left|a_{0}\right|^{2}$ and $\left|a_{1}\right|^{2}$, the states $|+\rangle$ and $|-\rangle$ would be measured with probabilities $\left|a_{0}+a_{1}\right|^{2} / 2$ and $\left|a_{0}-a_{1}\right|^{2} / 2$.


## Registers more useful than single qubits

- Each qubit in a quantum register is in a superposition of $|1\rangle$ and $|0\rangle$
- Consequently, a register of $n$ qubits is in a superposition of all $2^{n}$ possible bit strings that could be represented using $n$ bits
- The state space of a size- $n$ quantum register is a linear combination of $n$ basis vectors, each of length $2^{n}$ :

$$
\left|\psi_{n}\right\rangle=\sum_{i=0}^{2^{n}-1} a_{i}|i\rangle
$$

- A three-qubit register would thus have the following expansion:

$$
\begin{aligned}
\left|\psi_{2}\right\rangle & =a_{0}|000\rangle+a_{1}|001\rangle+a_{2}|010\rangle+a_{3}|011\rangle \\
& +a_{4}|100\rangle+a_{5}|101\rangle+a_{6}|110\rangle+a_{7}|111\rangle
\end{aligned}
$$


[^0]:    ${ }^{1}$ See http://www. scottaaronson.com/democritus/lec9.html for a great discussion by of why complex numbers and the 2 -norm are used to describe quantum mechanical systems

