
Introduction to Quantum Computing Part I

Emma Strubell

http://cs.umaine.edu/~ema/quantum_tutorial.pdf

April 12, 2011

Outline

Overview

What is quantum computing?

- Background
- Caveats

Mathematical representation

- Fundamental differences
- Hilbert spaces and Dirac notation
- The qubit
- Quantum Registers
- Quantum logic gates
- Computational complexity

Emma	Strubell ((University	of Maine)	
Enna	Struben	Chiverbity	or manney	

Intro to Quantum Computing

April 12, 2011 2 / 46

What is quantum computing? Background

Origins of fame

- Quantum computer first proposed by Richard Feynman in 1981
 - Problem: efficiently simulating quantum systems inherently impossible on a classical computer
 - Solution: new machine "built of quantum mechanical elements which obey quantum mechanical laws"
- Daniel Simon demonstrates exponential speedup in 1994
 - nobody cares; algorithm too abstract
- Peter Shor demonstrates *exciting* exponential speedup in 1997
 - based on Simon's algorithm
 - efficiently factors integers into primes
 - this breaks RSA

Emma Strubell (University of Maine)

Intro to Quantum Computing

What is quantum computing? Caveats

Unfortunately, scalable QCs still don't exist

- ▶ As of 2009, quantum computers able to factor 15 into 5 and 3
- The problem is decoherence
 - Man-made quantum system wants to interact with surrounding systems
 - Sources of interference include electric and magnetic fields required to power machine itself

Emma Strubell (University of Maine)

Intro to Quantum Computing

April 12, 2011 6 / 46

Mathematical representation

What is quantum computing?

- Background
- Caveats

Mathematical representation

- Fundamental differences
- Hilbert spaces and Dirac notation
- The qubit
- Quantum Registers
- Quantum logic gates
- Computational complexity

Emma Strubell	(University of Maine)
	(University of Maine)


Intro to Quantum Computing

April 12, 2011 7 / 46

Mathematical representation Fundamental differences

Three main differences from classical computers

- **1** Superposition
 - quantum system exists in all possible states at all times
- 2 Probabilities
 - fortunately, a probability can be associated with each of those states
- 3 Entanglement
 - probabilities of different states can depend on each other
 - quantum teleportation uses this property for cryptographic purposes

Emma Strubell (University of Maine)

Intro to Quantum Computing

April 12, 2011 9 / 46