j&\o

DECEMBER 2017

Agenda
® |ntroductions and thanks to Microsoft

®* Quantum News
* Food/Pizza
® Shor

Presentations can be found at github.com/NYCQuantumComputing
Twitter @NYCQuantum

Looking for hosts, presenters, topics, suggestions

\\o
l RECAP 2017

®* March 2017 — Kickoff

April 2017 — Grover search, IBM’s Quantum Experience, math behind Grover
® May 2017 — Thanks to DWAVE for their technical presentation

® June 2017 — Thanks to Chris Monroe from IONQJ

® July 2017 — Quantum Entanglement

® September 2017- Bell’s Inequality

® October 2017 — IBM presented QISKIT

®* November 2017 — Nathan Weibe from Microsoft

IIIIIIIIIIIII

\\o
l NEWS / INTERESTING

® IBM ThinkQ Conference December 6-8, 2017 -> videos

® Interesting papers
* “Quantum Artificial Life in an IBM Quantum Computer”

® Quantum Machine Learning

® Others?

7

j&\o

IDEAS FOR 2018

® Intro class — feedback for agenda, speakers

®* Quantum Games

® Microsoft Topological Computing

®* Complexity Theory

®* Quantum Machine Learning meets Classical Modeling

® Physics of Quantum Computing

i

¢

SHOR /FACTORING

NYC QUANTUM COMPUTING MEETUP

DECEMBER 20, 2017

I

BACKGROUND

QUANTUM
COMPUTING SINCE
DEMOCRITUS

i

"

N

Quantum
Computation
and Quantum
_ Information

/| MICHAEL A. NIELSEN
9/ and ISAAC L. CHUANG

&y,
w.
<

& AARONSON — “THE COMPLEXITY PETTING ZOQO"

Complexity theory analyzes the amount of resources time and/or space to solve a problem

® Theoretical CS usesTuring machines as the basis

P is the class of problems solved in polynomial time o

® "problem is a decision problem”

® f(k bits) -> {True, False) that gets solved in TIME(n¥)

PSPACE is P space where Time is unlimited EXP

EXP is the class of problems solved in TIME(2"¥)

® Examples: Chess 10'2° moves

NP

® EXP problems where a proof exists that that can be checked in polynomial time

| BQP
* Favorite example : checkmate, factoring a 10000 digit number |

P#NP, NP-Hard, NP Complete, BQP (Another talk...)

First 100 pages of Democritus

BIGGER COMPLEXITY ZOO

e P —
—t
-, § p —
v T p—
! . »
' 4 >
: ’
: J -
!]
: ; { \
. !
g

K& BIG O CHARTS VIA ERIC ROWELL

Common Data Structure Operations Array Sorting Algorithms
Space Complexity
Worst Worst Algorithm Time Complexity Space Complexity
Access Search Insertion Deletion Access Search Insertion Deletion

B [Bw Wl w ow [o]
N E fm m Lo
N O w m
EH B m m B
N B o [m B o]

(logtm)) (BCTegtn))) (CTeatn)] BTeatn)] (o] [o(m)) [ocm)] 0Cn tog(n))|
- - wA oc) o]
focm)
[o¢e)] [ocm]
gy Troe u- n)
AVL Troe L'c:"’:ﬂ (o)
KD Tree I1og(n)))] (6Ctogtn) 4 @ [0cmd] [_“l €_J o)

BIG O CHARTS VIA ERIC ROWELL

Big-O Complexity Chart
(RoreiBi] (sod] Fotr Good [ERERNIRRE)

1& PUBLIC KEY CRYPTOGRAPHY (PKI) BACKGROUND

Different varieties of PKI - RSA is the most popular

The problem of distributing a shared secret
¢ Completely random, one-time use pad is ideal (that’s a lot of secrets)

* |deal aka “Information-theoretically secure where key size needs to be the size of the message” — provable

What happens if you can encode using a public key, decode using a private key?
* encrypt(pubkey, m) -> c
* decrypt(privkey, c) -=> m

® Can you make encryption computationally easy and decryption “easy yet computationally hard?

® E.g. Can you define a P-SPACE encrypt and a P-SPACE decrypt + “trapdoor” information function but is NP
hard without “trapdoor information’?

1& PKI : FACTORING LARGE NUMBERS

® Multiplication is easy

* Multiplication is in P; the effort is based on the total number of digits

® Factoring 200+ digit number composed of 2 x 100+ digit primes is very (assumed, but not
yet proven to be) hard
®* NP-Hard
® Time is O(2") where n is the number of bit in N
* Cleverness has reduced the complexity to O(2nA1/3)
¢ 750bits is 200 digit number

®* However, given one of the primes (e.g. the private key), factoring the number makes it a P
space problem

\

THE MATH FOR RSA

Public Key

®* n product of two random primes p, q

®* e relative prime to 0= (p — 1)*(g — 1)

®* (1 < e < 0 where gcd (e, 0) — 1)
Private Key

* d*e=mod (p—1) x (gq—1)

* d=elmod (p—1) x (g—1)

®* (d*e) =k (p—1) x (g — 1) (not mod)
Message

®* m = plaintext

Encryption

®* ¢ = m*(mod n)

Decryption

* m = cd(mod n)

Since

e d = (me)d = med = mk(p-1)(a-1)+1 = m * mk(p-1)(g-1)

* Where by Fermat, mP-! = 1 mod p, m3! = 1 mod g

/|

Public Private
Message Encryption Decryption
HELLO keys >(5,14) [keys o> (1‘.1.1f)
' ! 3y . N
1
-~
' .
Y v ¥ n :
2 % mod(14)= 4 >4 ™ mod(14)= 3
A L

Encrypted MesSage- = Decrypted Meséage

m (all mod m)

O

FIPS PUB 186-3

FEDERAL INFORMATION PROCESSING STANDARDS
PUBLICATION

Digital Signature Standard (DSS)

CATEGORY: COMPUTER SECURITY SUBCATEGORY: CRYPTOGRAPHY

K& VERY DEPENDENT ON RANDOM PRIMES

B.3.2 Generation of Random Primes that are Provably Prime

An approved method that satisfies the constraints of Appendix B.3.1 shall be used for the
generation of IFC random primes p and ¢ that are provably pnime (see case A.1). One such
method is provided in Appendix B.3.2.1 and B.3.2.2. For this method, a random seed is initially
required (see Appendix B.3.2.1); the length of the seed is equal to twice the security strength
assoctated with the modulus n. After the seed is obtained, the primes can be generated (see
Appendix B.3.2.2),

B3.2.1 Get the Seed

The following process or its equivalent shall be used to generate the seed for this method.

Input:
nlen The intended bit length of the modulus n.
Output:
status The status to be returned, where status is cither SUCCESS or FAILURE,
seed The seed. If status = FAILURE, a value of zero is returned as the seed.
Process:

1. If mlen is not valid (see Section 5.1), then Retum (FAILURE, 0).

2. Let security_strength be the secunity strength associated with nlen, as specified in SP
800-57, Part 1.

3. Obtain a string seed of (2 * security_strength) bits from an RBG that supports the

53

1& THE MATH FOR FACTORING

* It’s all about efficiency and complexity
* Or separately out the various components of factoring and deciding how quantum
techniques can best be used
® The classic tricks for factoring
® Modular arithmetic O(n)
® Euclid’s theorem O(log n)
® Efficient calculation of ged (greatest common denominator) O(n?)

* Efficient period finding O(2") (Oops! Bad!)

7

HOW HARD IS BRUTE FORCE FACTORING?

General purpose factoring of large numbers

Approximate state of the art m @
T T T 0
1 bikon years 4 ® Digit-record-setting number factored ¢
200 200 ®
Other large number factored
1 miion years 1 eo®
E ‘5 2 1% .WJ’
§ -1 thousand years S f E o =
B Hiooyews &¢ -) <o
-l
s [10years 3/8 1 2 0 @
- o o5 4 10 &
§ [L
& | one month 4 100 -
o -
g [omeday -
-
one hour -
100 seconds 4
0 50
= 4
1 i i 0
100 1000 10000 100000
L (bs) 0
1960 1 1980 1990 2000 2010 2020
Figure 3.2: Scaling of number field sieve (NFS) on classical computers. Both horizontal Figure 1: Size of numbers (in decimal digits) that could be factored over recent history. Green
p ortical avee ans snals y o ., S I s " . . ‘approximate state of the art’ points do not necessarily repr specific bers or the very largest
‘fnd \er.al axes are log scale. The horizontal axis is the size of the number being that could be at that time—they are qualitative estimates. The other points rep AN
factored, in bits. numbers being factored, either as the first number of that size ever to be factored (red) or not (orange).

Dates are accurate to the year. Some points are annotated with decimal digit size, for ease of reading.

l& GREATEST COMMON DENOMINATOR

Euclid’s Algorithm

What does it do?
® gcd (32,21), where32is1x2°and21is1x3x7->gcdis1
® gcd (35,60) where35is1x5x7and60is1x22x3x5->gcdis5

What'’s the algorithm?
* Ifa>b, risremainder when ais divided by b & r # 0, then gcd(a, b) = gcd (b, r)
* Repeatedly use gcd(a, b) = gecd (b, r) =gcd (r, r’) when r=0->a = kb,

What'’s the upper bound running time?
* O(loga)

\

MODULAR ARITHMETIC

* N = 35

L]
o
1l

b mod N (b = gN + a, g is any integer)
® 24 = 24 mod 35

¢ 14 49 mod 35

* 34 = -1 mod 35

®* Addition
* x =24 + 49 mod 35
* 3 =73 mod 35
* 3 = (14 + 24) mod 35

® Multiplication
* 24 * 49 mod 35
* 14 * 24 mod 35

® Modular arithmetic is very efficient

THE SCHEME

®* Factor N

Select a random value
x € {2, 3.., N— 1}, gcd(x, N) = 1 (prime test)
Determine the period r of the sequence
x0, x!, x%2, x3, .mod N (r > 0, s.t. x* = 1 mod N)
* (.. r is even, x2 + 1 # 0 mod N)
Then
xr = x(r/2)2 = 1 mod N

(xr/2 + 1)(xr/2 — 1)

= 0 mod N (no remainder)
(x/2 4+ 1)(x*/2 — 1) = kN for some k

Divisors : gecd (x*/2 + 1, N) & gecd (x*/2 - 1, N)

\

PERIOD FINDING (THE MATH)

N 35
X 2%
0 1
1 2
2 4
3 8
4 16
5 32
6 29
7 23
8 11
9 22
10 9
11 18
12 1
13 2
14 4
15 8
16 16
17 32
18 29
19 23
20 11
By Hand - r 12
(r2+1)(r2-1) 4095
GCD (r2+1) 5

GCD (r%-1) 7

12

531440

x"mod N

5
1
5
25
20
30
10
15
5
25
20
30
10
15
5
25
20
30
10
15
5
H#NUMI

14

28

21

7

14

28

21
H#NUMI
H#NUMI
H#NUMI
H#NUMI

43

29
22

29
22

H#NUMI
H#NUMI
H#NUMI
H#NUMI
H#NUMI
H#NUMI
H#NUMI
H#NUMI
H#NUMI
H#NUMI
H#NUMI
H#NUMI

3418800

31

31
16

11
26

31
16

HNUMI
HNUMI
HNUMI
HNUMI
HNUMI
HNUMI
HNUMI
HNUMI
HNUMI
HNUMI
HNUMI

887503680

—\

N

JUST FIND THE PERIOD, RIGHT?

® 750 bits is 200 digit number

® If there’s just two primes in the 750 bit number, where’s the period?
® In fact, you need at least 2N? bits to figure out the period

* (2*¥750)2 = 2250000 bits

® Note that’s it a polymonial number of bits

THE MATH FOR FACTORING — CONT'D

® The classic tricks for factoring

® Efficient period finding O(2") (Oops! Bad!)

® Replacing classic period finding with “This one weird Quantum Trick”
® Very efficient period finding — Shor’s QFT
® (Hint: Use quantum superposition to solve period finding)

* Superposition reduces the complexity to a O(n?)

p :
l END OF SLIDES / QUESTIONS |

y

1& AARONSON — “THE COMPLEXITY PETTING ZOO"

* Classic Search f:[N] = {0,1} takes ~N queries

* Grover Quantum Search, f:[N] = VN queries

® Classic Period Finding f:[N] = N takes ~N queries
®* Quantum Period Finding f:[N] = N takes+/N queries

® Shor/Simon Quantum Period Finding f:[N] = N takes O(log N) queries

