
DECEMBER 2017 

• Agenda

• Introductions and thanks to Microsoft

• Quantum News 

• Food/Pizza

• Shor

• Presentations can be found at github.com/NYCQuantumComputing

• Twitter @NYCQuantum

• Looking for hosts, presenters, topics, suggestions



RECAP 2017
• March 2017 – Kickoff 

• April 2017 – Grover search, IBM’s Quantum Experience, math behind Grover

• May 2017 – Thanks to DWAVE for their technical presentation

• June 2017 – Thanks to Chris Monroe from IONQJ

• July 2017 – Quantum Entanglement 

• September 2017- Bell’s Inequality 

• October 2017 – IBM presented QISKIT 

• November 2017 – Nathan Weibe from Microsoft 



INTRODUCTIONS



NEWS / INTERESTING

• IBM ThinkQ Conference December 6-8, 2017 -> videos 

• Interesting papers
• “Quantum Artificial Life in an IBM Quantum Computer”

• Quantum Machine Learning

• Others? 



IDEAS FOR 2018

• Intro class – feedback for agenda, speakers 

• Quantum Games

• Microsoft Topological Computing

• Complexity Theory 

• Quantum Machine Learning meets Classical Modeling

• Physics of Quantum Computing 



SHOR/FACTORING
NYC QUANTUM COMPUTING MEETUP

DECEMBER 20, 2017



BACKGROUND 



AARONSON – “THE COMPLEXITY PETTING ZOO"

• Complexity theory analyzes the amount of resources time and/or space to solve a problem
• Theoretical CS usesTuring machines as the basis

• P is the class of problems solved in polynomial time
• ”problem is a decision problem” 

• f(k bits) -> {True, False) that gets solved in TIME(nk)

• PSPACE is P space where Time is unlimited

• EXP is the class of problems solved in TIME(2n^k)
• Examples : Chess 10120 moves

• NP
• EXP problems where a proof exists that that can be checked in polynomial time

• Favorite example : checkmate, factoring a 10000 digit number

• P≠NP, NP-Hard, NP Complete, BQP (Another talk…)

• First 100 pages of Democritus



BIGGER COMPLEXITY ZOO



BIG O CHARTS VIA ERIC ROWELL 



BIG O CHARTS VIA ERIC ROWELL 



PUBLIC KEY CRYPTOGRAPHY (PKI) BACKGROUND

• Different varieties of PKI - RSA is the most popular

• The problem of distributing a shared secret
• Completely random, one-time use pad is ideal (that’s a lot of secrets)

• Ideal aka “Information-theoretically secure where key size needs to be the size of the message” – provable 

• What happens if you can encode using a public key, decode using a private key? 
• encrypt(pubkey, m) -> c 
• decrypt(privkey, c) -> m

• Can you make encryption computationally easy and decryption “easy yet computationally hard?  
• E.g. Can you define a P-SPACE encrypt and a P-SPACE decrypt + “trapdoor” information function but is NP 

hard without “trapdoor information”? 



PKI : FACTORING LARGE NUMBERS

• Multiplication is easy
• Multiplication is in P; the effort is based on the total number of digits 

• Factoring 200+ digit number composed of 2 x 100+ digit primes is very (assumed, but not 
yet proven to be) hard
• NP-Hard
• Time is O(2n) where n is the number of bit in N 
• Cleverness has reduced the complexity to   O(2n^1/3)
• 750bits is 200 digit number

• However, given one of the primes (e.g. the private key), factoring the number makes it a P 
space problem



THE MATH FOR RSA
• Public Key 

• n product of two random primes p, q
• e relative prime to ! = (p – 1)*(q – 1)
• (1 < e < ! where gcd (e, !) – 1)

• Private Key 
• d * e = mod (p – 1) x (q – 1)
• d = e-1 mod (p – 1) x (q – 1)
• (d * e) = k (p – 1) x (q – 1) (not mod)

• Message
• m = plaintext

• Encryption
• c = me(mod n)

• Decryption
• m = cd(mod n)

• Since
• cd = (me)d = med = mk(p-1)(q-1)+1 = m * mk(p-1)(q-1) = m * 1 = m (all mod m)
• Where by Fermat, mp-1 = 1 mod p, mq-1 = 1 mod q



VERY DEPENDENT ON RANDOM PRIMES



THE MATH FOR FACTORING

• It’s all about efficiency and complexity
• Or separately out the various components of factoring and deciding how quantum 

techniques can best be used

• The classic tricks for factoring 
• Modular arithmetic O(n) 

• Euclid’s theorem O(log n) 

• Efficient calculation of gcd (greatest common denominator) O(n2)

• Efficient period finding O(2n) (Oops! Bad!)



HOW HARD IS BRUTE FORCE FACTORING?



GREATEST COMMON DENOMINATOR

• Euclid’s Algorithm

• What does it do? 
• gcd (32, 21), where 32 is 1 x 25 and 21 is 1 x 3 x 7 -> gcd is 1

• gcd (35, 60) where 35 is 1 x 5 x 7 and 60 is 1 x 22 x 3 x 5 -> gcd is 5

• What’s the algorithm? 
• If a > b, r is remainder when a is divided by b &  r ≠ 0, then gcd(a, b) = gcd (b, r)

• Repeatedly use gcd(a, b) = gcd (b, r) = gcd (r, r’) when r = 0 -> a = kb, 

• What’s the upper bound running time? 
• O(log a)



MODULAR ARITHMETIC

• N = 35

• a ≡ b mod N (b = qN + a, q is any integer)

• 24 = 24 mod 35 

• 14 = 49 mod 35 

• 34 = -1 mod 35

• Addition
• x = 24 + 49 mod 35 
• 3 = 73 mod 35
• 3 = (14 + 24) mod 35

• Multiplication
• 24 * 49 mod 35 
• 14 * 24 mod 35 

• Modular arithmetic is very efficient 



THE SCHEME

• Factor N 

• Select a random value 
x ∈ {2, 3.., N – 1}, gcd(x, N) = 1 (prime test)

• Determine the period r of  the sequence
x0, x1, x2, x3, … mod N (r > 0, s.t. xr = 1 mod N)
• (… r is even, xr/2 ± 1 ≠ 0 mod N)

• Then
xr = x(r/2)2 ≡ 1 mod N
(xr/2 + 1)(xr/2 – 1) ≡ 0 mod N (no remainder)
(xr/2 + 1)(xr/2 – 1) = kN for some k 

• Divisors : gcd (xr/2 + 1, N) & gcd (xr/2 - 1, N) 



PERIOD FINDING (THE MATH)
N 35 xr mod N

x 2* 3 5 7 43 31
0 1 1 1 1 1 1
1 2 3 5 7 8 31
2 4 9 25 14 29 16
3 8 27 20 28 22 6
4 16 11 30 21 1 11
5 32 33 10 7 8 26
6 29 29 15 14 29 1
7 23 17 5 28 22 31
8 11 16 25 21 1 16
9 22 13 20 7 #NUM! 6

10 9 4 30 14 #NUM! #NUM!
11 18 12 10 28 #NUM! #NUM!
12 1 1 15 21 #NUM! #NUM!
13 2 3 5 7 #NUM! #NUM!
14 4 9 25 14 #NUM! #NUM!
15 8 27 20 28 #NUM! #NUM!
16 16 11 30 21 #NUM! #NUM!
17 32 33 10 #NUM! #NUM! #NUM!
18 29 29 15 #NUM! #NUM! #NUM!
19 23 17 5 #NUM! #NUM! #NUM!
20 11 16 #NUM! #NUM! #NUM! #NUM!

By Hand - r 12 12 r = ? r = ? 4 6

(r2+1)(r2-1) 4095 531440 3418800 887503680

GCD (r2+1) 5 5 5 7
GCD (r2-1) 7 7 7 5



JUST FIND THE PERIOD, RIGHT? 

• 750 bits is 200 digit number

• If there’s just two primes in the 750 bit number, where’s the period? 

• In fact, you need at least 2N2 bits to figure out the period

• (2*750)2 = 2250000 bits

• Note that’s it a polymonial number of bits



THE MATH FOR FACTORING – CONT’D

• ….

• The classic tricks for factoring 
• ….

• Efficient period finding O(2n) (Oops! Bad!)

• Replacing classic period finding with “This one weird Quantum Trick”
• Very efficient period finding – Shor’s QFT 

• (Hint: Use quantum superposition to solve period finding)

• Superposition reduces the complexity to a O(n2) 



END OF SLIDES / QUESTIONS



AARONSON – “THE COMPLEXITY PETTING ZOO"

• Classic Search f:[N] = {0,1} takes ~N queries 

• Grover Quantum Search,  f:[N] =      queries 

• Classic Period Finding f:[N] = N takes ~N queries

• Quantum Period Finding f:[N] = N takes     queries

• Shor/Simon Quantum Period Finding f:[N] = N takes O(log N) queries  

!

!


