Shor's Algorithm NYC Quantum Meetup 12/20/2017

FACTORING NUMBERS WITH PERIOD ESTIMATION

MUIR KUMPH

IBM RESEARCH 2017

Shor's Algorithm

a quantum algorithm which can factor numbers

- Shor's algorithm uses period finding and the quantum Fourier transform (QFT) to factor numbers
- It is a probabilistic algorithm and it succeeds more than 50% of the time
- If run on a quantum computer, it would take of order *O*(*logN*)²... quantum gates to find the factors of an integer *N*

Peter W. Shor[†]

A little background

math and qubit concepts

- numbers can be stored in base 2 using either bits or qubits
 - classical bits: 10 decimal is 1010 in base 2
 - qubits: 10 in base 2 is |1010>
 - qubits can also be in a superposition of all their states
 - ie. c|0> + d|1>, where c and d are complex numbers
- modulo arithmetic is one where there is a maximum number
 - modulo 15 means that there is no number above 15
 - $(14 + 1) \mod 15 = 0$
 - can also be written (14+1)%15 = 0
 - eg. (14+5)%15=4
- greatest common divider (gcd)
 - gcd(15, 70)=5
 - 15=3x5, 70=2x5x7

Steps of the Algorithm

How to factor a number N:

FROM WIKIPEDIA:

- 1. Pick a random number a < N.
- 2. Compute gcd(a, N).
- 3. If $gcd(a, N) \neq 1$, then this number is a nontrivial factor of N, so we are done.
- 4. Otherwise, use the period-finding subroutine to find r, the period of the following function: f(x)=a^xmodN, i.e. the order r of a in (Z_N)^x, which is the smallest positive integer r for which f(x+r)=f(x), or f(x+r)=a^{x+r}modN≡a^xmodN.
- 5. If r is odd, go back to step 1.
- 6. If $a^{r/2} \equiv -1 \pmod{N}$, go back to step 1.
- 7. $gcd(a^{r/2}+1,N)$ and $gcd(a^{r/2}-1,N)$ are both nontrivial factors of N.

IBM Research / December 20, 2017

apply a gate which allows one to find the order r of (a mod N)

Replace Classical Order Finding with Quantum Methods

The phase estimation part

phase estimation is getting the period of a function

a simple phase estimation circuit:

$$|0\rangle - H - P - H - \swarrow$$

H (Hadamard gate) takes the qubit into superposition state |0> + |1> P (applies a phase)

- H (Hadamard gate) takes the qubit back to |0> if no phase
- H is the quantum Fourier transform for a single qubit

Consider the single qubit phase gate (Z)

-1

1

This gate will map

|0> + |1> to

|0> - |1>

to measure the phase of it, one needs a controlled version. - see to the right

What do phases and order finding have to do with each other?

for eigenstates:the equation to the left is true for eigenstates |q> of the operator UU|q>=u|q>U is an operator which maps one quantum state to anotherU is an operatorU is an operator which maps one quantum state to anotheru is a numbersame except for a constant factor u (the eigenvalue)

the eigenvalue can be a complex number

if **U** is a quantum operator which multiplies the state by 'a' modulo N, then for eigenstates, the phase φ it accumulates on a single application of u is $\frac{2k\pi}{r}$, where k is some integer between 0 and r

IBM Research / December 20, 2017

$$u = e^{-i\varphi}$$

11

Consider the problem of trying to factor 15 – it's almost trivial

for Shor's algorithm		Input
we need to pick 'a'	0	0000>
	1	0001>
in this example we	2	0010>
use a=7	3	0011>
	4	0100>
then we need a	5	0101>
modulo arithmetic	6	0110>
order finding gate u	7	0111>
ordor mang gate a	8	1000>
it's already clear	9	1001>
that r=4 because	10	1010>
	11	1011>
we can see under	12	1100>
the hood of the	13	1101>
algorithm	14	1110>
5	15	11111>

	Input	Output
)	0000>	0000>
1	0001>	0111>
2	0010>	1110>
3	0011>	0110>
4	0100>	1101>
5	0101>	0101>
5	0110>	1100>
7	0111>	0100>
8	1000>	1011>
9	1001>	0011>
10	1010>	1010>
11	1011>	0010>
12	1100>	1001>
13	1101>	0001>
14	1110>	1000>
15	1111)	1111)

Order finding 7 modulo 15

We can also look at the eigenvalues and vectors of u

we can use phase estimation to determine what the eigenvalues of these eigenvectors are

the phases of the eigenvalues are in the form $\frac{2k\pi}{r}$, where r=4

Eigenvalue	Eigenvector
-1	$-\frac{1}{2} \mid 0010 \rangle - \frac{1}{2} \mid 1000 \rangle + \frac{1}{2} \mid 1011 \rangle + \frac{1}{2} \mid 1110 \rangle$
-1	$-\frac{1}{2} \mid 0001 \rangle - \frac{1}{2} \mid 0100 \rangle + \frac{1}{2} \mid 0111 \rangle + \frac{1}{2} \mid 1101 \rangle$
-1	$\frac{1}{2} 0011\rangle - \frac{1}{2} 0110\rangle - \frac{1}{2} 1001\rangle + \frac{1}{2} 1100\rangle$
i	$\frac{1}{2}i \mid 0010\rangle - \frac{1}{2}i \mid 1000\rangle - \frac{1}{2} \mid 1011\rangle + \frac{1}{2} \mid 1110\rangle$
i	$-\frac{1}{2}i \mid 0001 \rangle + \frac{1}{2}i \mid 0100 \rangle - \frac{1}{2} \mid 0111 \rangle + \frac{1}{2} \mid 1101 \rangle$
i	$-\frac{1}{2} \mid 0011 \rangle + \frac{1}{2}i \mid 0110 \rangle - \frac{1}{2}i \mid 1001 \rangle + \frac{1}{2} \mid 1100 \rangle$
- <i>i</i>	$-\frac{1}{2}i \mid 0010\rangle + \frac{1}{2}i \mid 1000\rangle - \frac{1}{2} \mid 1011\rangle + \frac{1}{2} \mid 1110\rangle$
- <i>i</i>	$\frac{1}{2}i \mid 0001 \rangle - \frac{1}{2}i \mid 0100 \rangle - \frac{1}{2} \mid 0111 \rangle + \frac{1}{2} \mid 1101 \rangle$
- <i>i</i>	$-\frac{1}{2} \mid 0011 \rangle - \frac{1}{2}i \mid 0110 \rangle + \frac{1}{2}i \mid 1001 \rangle + \frac{1}{2} \mid 1100 \rangle$
1	- 1111>
1	$-\frac{1}{2}$ 0010> $-\frac{1}{2}$ 1000> $-\frac{1}{2}$ 1011> $-\frac{1}{2}$ 1110>
1	$-\frac{1}{2} \mid 0001 \rangle - \frac{1}{2} \mid 0100 \rangle - \frac{1}{2} \mid 0111 \rangle - \frac{1}{2} \mid 1101 \rangle$
1	$-\frac{1}{2}$ 0011> $-\frac{1}{2}$ 0110> $-\frac{1}{2}$ 1001> $-\frac{1}{2}$ 1100>
1	- 1010>
1	- 0101>
1	- 0000>

Order finding 7 mod 15

u="x7n15" is the modulo arithmetic, which is controlled on the state of the phase estimation qubits

the order finding is done in even powers of u: u^1 , u^2 , u^4 , u^8 doubling the precision of the phase estimation with each qubit

QFT |0>+exp(2*pi*i*x/2ⁿ)|1> (H) |x, > |0>+exp(2*pi*i*x/2ⁿ⁻¹)|1> X2> (H) the quantum |0>+exp(2*pi*i*x/2ⁿ⁻²)|1> X2> Fourier transform (QFT) is the quantum analogue of the discrete (н) 0>+exp(2*pi*i*x/4)|1> |x_n-1> Fourier transform |0>+exp(2*pi*i*x/2)|1> 1xn> (DFT) $QFT(|x_1x_2\dots x_n angle) = rac{1}{\sqrt{N}} \, \left(|0 angle + e^{2\pi i \, [0.x_n]}|1 angle ight) \otimes \left(|0 angle + e^{2\pi i \, [0.x_{n-1}x_n]}|1 angle ight) \otimes \dots \otimes \left(|0 angle + e^{2\pi i \, [0.x_1x_2\dots x_n]}|1 angle ight)$ $\mathsf{QFT}_4 = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$ each qubit gives a binary increase in the precision of the Fourier transform $QFT_{2} = \begin{vmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{vmatrix}$

simulation results of circuit

measurement on the phase estimation qubits would give one of 4 possible outcomes

for single runs of the algorithm, half the time you might think that r=2 because the phase was π

Probability	Measurem	nent	State
0.25	(01 02	03)	$0.5 (\mid 0000001 \rangle) + 0.5 (\mid 0000100 \rangle) + 0.5 (\mid 0000111 \rangle) + 0.5 (\mid 0001101 \rangle)$
0.25	(01 12	03)	$-(0. + 0.5 i) (0100111\rangle) + (0. + 0.5 i) (0101101\rangle) + 0.5 (0100001\rangle) - 0.5 (0100100\rangle)$
0.25	$(1_1 \ 0_2)$	03)	$0.5 (1000001 \rangle) + 0.5 (1000100 \rangle) - 0.5 (1000111 \rangle) - 0.5 (1001101 \rangle)$
0.25	$(1_1 \ 1_2)$	03)	$(0. + 0.5 i) (1100111 \rangle) - (0. + 0.5 i) (1101101 \rangle) + 0.5 (1100001 \rangle) - 0.5 (1100100 \rangle)$
Probability	Measurem	nent	State

IBM Research / December 20, 2017

what does x7n15 look like on today's small quantum computers? SWAP

but in order to do phase estimation, we would need a controlled version of this circuit

each of the SWAP gates shown here would be replaced with a controlled SWAP (aka FREDKIN) gate to make this a controlled modulo arithmetic

- this is a highly optimized version only valid for a=7, N=15
- in general one would need to build adders, multipliers and then exponential circuits from discrete quantum logic gates

For further reading

- Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
 - https://arxiv.org/abs/quant-ph/9508027
- Quantum Experience Users Guide to Shor's Algorithm:
 - https://quantumexperience.ng.bluemix.net/proxy/tutorial/full-user-guide/004-Quantum Algorithms/110-Shor's algorithm.html
- Mathematica Add-on for Quantum Mechanics and Quantum Computing
 - http://homepage.cem.itesm.mx/jose.luis.gomez/quantum/
- A 2D Nearest-Neighbor Quantum Architecture for Factoring in Polylogarithmic Depth
 - https://arxiv.org/abs/1207.6655
- Constant-Optimized Quantum Circuits for Modular Multiplication and Exponentiation
 - <u>https://arxiv.org/abs/1202.6614</u>
- · Realization of a scalable Shor algorithm
 - https://arxiv.org/pdf/1507.08852.pdf
- · Wikipedia
 - <u>https://en.wikipedia.org/wiki/Shor%27s_algorithm</u>

To Do for Next Time

Qiskit has Toffoli gates and QFT built-in

- Show 2nd bit on QFT
- Show how to eliminate most of the phase estimation qubits
 - Kitaev QFT
- The u=7mod15 can then be run on a 5 qubit machine
- Demo Shor's Algorithm with Qiskit
- Deutsch-Jozsa Algorithm

IBM Research / December 20, 2017