Shor's Algorithm
 NYC Quantum Meetup 12/20/2017

FACTORING NUMBERS WITH PERIOD ESTIMATION
MUIR KUMPH
IBM RESEARCH 2017

Shor's Algorithm

a quantum algorithm which can factor numbers

- Shor's algorithm uses period finding and the quantum Fourier transform (QFT) to factor numbers
- It is a probabilistic algorithm and it succeeds more than 50% of the time
- If run on a quantum computer, it would take of order $O(\log N)^{2} \ldots$ quantum gates to find the factors of an integer N

Polynomial-Time Algorithms for
Prime Factorization and
Discrete Logarithms on a
Quantum Computer*

A little background

math and qubit concepts

- numbers can be stored in base 2 using either bits or qubits
- classical bits: 10 decimal is 1010 in base 2
- qubits: 10 in base 2 is |1010>
- qubits can also be in a superposition of all their states
- ie. $c|0>+d| 1>$, where c and d are complex numbers
- modulo arithmetic is one where there is a maximum number
- modulo 15 means that there is no number above 15
- $(14+1) \bmod 15=0$
- can also be written $(14+1) \% 15=0$
- eg. $(14+5) \% 15=4$
- greatest common divider (gcd)
- $\operatorname{gcd}(15,70)=5$
- $15=3 \times 5,70=2 \times 5 \times 7$

Steps of the Algorithm

How to factor a number N :

FROM WIKIPEDIA:

1. Pick a random number $\mathrm{a}<\mathrm{N}$.
2. Compute $\operatorname{gcd}(\mathrm{a}, \mathrm{N})$.
3. If $\operatorname{gcd}(a, N) \neq 1$, then this number is a nontrivial factor of N, so we are done.
4. Otherwise, use the period-finding subroutine to find r, the period of the following function: $f(x)=a^{x} \bmod N$, i.e. the order r of a in $\left(\mathbb{Z}_{N}\right)^{x}$, which is the smallest positive integer r for which $f(x+r)=f(x)$, or $f(x+r)=a^{x+r} \bmod N \equiv a^{x} \bmod N$.
5. If r is odd, go back to step 1.
6. If $a^{r / 2} \equiv-1(\bmod N)$, go back to step 1 .
7. $\operatorname{gcd}\left(a^{r / 2}+1, N\right)$ and $\operatorname{gcd}\left(a^{r / 2}-1, N\right)$ are both nontrivial factors of N.

Algorithm Flow

Steps of the Algorithm

no

quantum

Algorithm Flow

apply a gate which allows one to find the order r of $(a \bmod N)$

Replace Classical Order Finding with Quantum Methods

qubit registers are divided into two parts top: phase
bottom: modulo arithmetic

once, N and a have been chosen, the quantum circuit looks like
$|00 \ldots 0\rangle$

The phase estimation part

phase estimation is getting the period of a function
a simple phase estimation circuit:

H (Hadamard gate) takes the qubit into superposition state |0> + |1> P (applies a phase)
H (Hadamard gate) takes the qubit back to |0> if no phase
H is the quantum Fourier transform for a single qubit

Consider the single qubit

 phase gate (Z)This gate will map
$|0>+| 1>$ to
|0>-|1>
to measure the phase of it, one needs a controlled version. - see to the right

Eigenvalue	Eigenvector
-1	$\|1\rangle$
1	$\|0\rangle$

What do phases and order finding have to do with each other?

for eigenstates: the equation to the left is true for eigenstates $\mid q>$ of the operator \mathbf{U}
U|q>=u|q>
\mathbf{U} is an operator
u is a number

$$
\mathrm{u}=e^{-i \varphi}
$$

Consider the problem of trying to factor 15 - it's almost trivial

for Shor's algorithm		Input	Output
we need to pick 'a',	0	$10000\rangle$	$10000\rangle$
in this example we	1	$10001\rangle$	$10111\rangle$
use a=7	2	$1001\rangle\rangle$	$11110\rangle$
	3	$10011\rangle$	$10110\rangle$
then we need a	4	$10100\rangle$	$11101\rangle$
modulo arithmetic	5	$10101\rangle$	$10101\rangle$
order finding gate u	6	$10110\rangle$	$11100\rangle$
	7	$10111\rangle$	$10100\rangle$
it's already clear	8	$\|1000\rangle$	$11011\rangle$
that r=4, because	10	$11001\rangle$	$10011\rangle$
we can see under	11	$1010\rangle$	$11010\rangle$
the hood of the	12	$\|1100\rangle$	$10010\rangle$
algorithm	13	$\|1101\rangle$	$1001\rangle$
	14	$\|1110\rangle$	$110000\rangle$
	15	$\|1111\rangle$	$11111\rangle$

$$
\begin{aligned}
& 7^{2}=4 \quad(\bmod 15) \\
& 7^{3}=4 \cdot 7=13 \quad(\bmod 15) \\
& 7^{4}=13 \cdot 7=1 \quad(\bmod 15)
\end{aligned}
$$

$$
\mathbf{u}:\left\{\begin{array}{llll|llll}
|1\rangle & \rightarrow & |7\rangle & \rightarrow & |4\rangle & \rightarrow & |13\rangle & \rightarrow \\
|1\rangle \\
|2\rangle & \rightarrow & |14\rangle & \rightarrow & |8\rangle & \rightarrow & |11\rangle & \rightarrow
\end{array}|2\rangle\right.
$$

Multiplication by 7 modulo 15

Order finding 7 modulo 15

We can also look at the eigenvalues and vectors of u
we can use phase estimation to determine what the eigenvalues of these eigenvectors are
the phases of the eigenvalues are in the form $\frac{2 k \pi}{r}$, where $r=4$

Eigenvalue	Eigenvector
-1	$-\frac{1}{2}\|0010\rangle-\frac{1}{2}\|1000\rangle+\frac{1}{2}\|1011\rangle+\frac{1}{2}\|1110\rangle$
-1	$-\frac{1}{2}\|0001\rangle-\frac{1}{2}\|0100\rangle+\frac{1}{2}\|0111\rangle+\frac{1}{2}\|1101\rangle$
-1	$\frac{1}{2}\|0011\rangle-\frac{1}{2}\|0110\rangle-\frac{1}{2}\|1001\rangle+\frac{1}{2}\|1100\rangle$
i	$\frac{1}{2} i\|0010\rangle-\frac{1}{2} i\|1000\rangle-\frac{1}{2}\|1011\rangle+\frac{1}{2}\|1110\rangle$
i	$-\frac{1}{2} i\|0001\rangle+\frac{1}{2} i\|0100\rangle-\frac{1}{2}\|0111\rangle+\frac{1}{2}\|1101\rangle$
i	$-\frac{1}{2}\|0011\rangle+\frac{1}{2} i\|0110\rangle-\frac{1}{2} i\|1001\rangle+\frac{1}{2}\|1100\rangle$
$-i$	$-\frac{1}{2} i\|0010\rangle+\frac{1}{2} i\|1000\rangle-\frac{1}{2}\|1011\rangle+\frac{1}{2}\|1110\rangle$
$-i$	$\frac{1}{2} i\|0001\rangle-\frac{1}{2} i\|0100\rangle-\frac{1}{2}\|0111\rangle+\frac{1}{2}\|1101\rangle$
$-i$	$-\frac{1}{2}\|0011\rangle-\frac{1}{2} i\|0110\rangle+\frac{1}{2} i\|1001\rangle+\frac{1}{2}\|1100\rangle$
1	$-\|1111\rangle$
1	$-\frac{1}{2}\|0010\rangle-\frac{1}{2}\|1000\rangle-\frac{1}{2}\|1011\rangle-\frac{1}{2}\|1110\rangle$
1	$-\frac{1}{2}\|0001\rangle-\frac{1}{2}\|0100\rangle-\frac{1}{2}\|0111\rangle-\frac{1}{2}\|1101\rangle$
1	$-\frac{1}{2}\|0011\rangle-\frac{1}{2}\|0110\rangle-\frac{1}{2}\|1001\rangle-\frac{1}{2}\|1100\rangle$
1	$-\|1010\rangle$
1	$-\|0101\rangle$
1	$-\|0000\rangle$

Order finding 7 mod 15

$u=" x 7 n 15$ " is the modulo arithmetic, which is controlled on the state of the phase estimation qubits
the order finding is done in even powers of u : u^{1}, u^{2}, $u^{4}, u^{8} \ldots$ doubling the precision of the phase estimation with each qubit

QFT

the quantum
Fourier transform
(QFT) is the
quantum analogue
of the discrete
Fourier transform

(DFT)

$$
Q F T\left(\left|x_{1} x_{2} \ldots x_{n}\right\rangle\right)=\frac{1}{\sqrt{N}}\left(|0\rangle+e^{2 \pi i\left[0 . x_{n} \mid\right.}|1\rangle\right) \otimes\left(|0\rangle+e^{2 \pi i\left|0 . x_{n-1}-x_{n}\right|}|1\rangle\right) \otimes \cdots \otimes\left(|0\rangle+e^{2 \pi i\left[0 \cdot x_{1} x_{2} \cdots \cdots x_{n} \mid\right.}|1\rangle\right)
$$

each qubit gives a binary increase in the precision of the
Fourier transform

$$
\mathrm{QFT}_{2}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

$$
\mathrm{QFT}_{4}=\left[\begin{array}{cccc}
\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{\mathrm{i}}{2} & -\frac{1}{2} & -\frac{\mathrm{i}}{2} \\
\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{1}{2} & -\frac{\mathrm{i}}{2} & -\frac{1}{2} & \frac{\mathrm{i}}{2}
\end{array}\right]
$$

simulation results of circuit

measurement on the phase estimation qubits would give one of 4 possible outcomes
for single runs of the algorithm, half the time you might think that $\mathrm{r}=2$ because the phase was π

Probability	Measurement	State
0.25	$\left(\begin{array}{lll}0_{1} & 0_{2} & 0_{3}\end{array}\right)$	$0.5(\|0000001\rangle)+0.5(\|0000100\rangle)+0.5(\|0000111\rangle)+0.5(\|0001101\rangle)$
0.25	$\left(\begin{array}{lll}0_{1} & 1_{2} & 0_{3}\end{array}\right)$	$-(0 .+0.5 i)(\|0100111\rangle)+(0 .+0.5 i)(\|0101101\rangle)+0.5(\|0100001\rangle)-0.5(\|0100100\rangle)$
0.25	$\left(\begin{array}{lll}1 & 0_{2} & 0_{3}\end{array}\right)$	$0.5(\|1000001\rangle)+0.5(\|1000100\rangle)-0.5(\|1000111\rangle)-0.5(\|1001101\rangle)$
0.25	$\left(\begin{array}{lll}1 & 1_{2} & 0_{3}\end{array}\right)$	$(0 .+0.5 i)(\|1100111\rangle)-(0 .+0.5 i)(\|1101101\rangle)+0.5(\|1100001\rangle)-0.5(\|1100100\rangle)$
Probability	Measurement	State

what does $x 7 n 15$ look like on today's small quantum computers?

but in order to do phase estimation, we would need a controlled version of this circuit
each of the SWAP
gates shown here would be replaced with a controlled SWAP (aka FREDKIN) gate to make this a controlled modulo arithmetic

- this is a highly optimized version only valid for $\mathrm{a}=7$, $\mathrm{N}=15$
- in general one would need to build adders, multipliers and then exponential circuits from discrete quantum logic gates

For further reading

- Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer
- https://arxiv.org/abs/quant-ph/9508027
- Quantum Experience Users Guide to Shor's Algorithm:
- https://quantumexperience.ng.bluemix.net/proxy/tutorial/full-user-guide/004-Quantum Algorithms/110-Shor's algorithm.html
- Mathematica Add-on for Quantum Mechanics and Quantum Computing
- http://homepage.cem.itesm.mx/jose.luis.gomez/quantum
- A 2D Nearest-Neighbor Quantum Architecture for Factoring in Polylogarithmic Depth
- https://arxiv.org/abs/1207.6655
- Constant-Optimized Quantum Circuits for Modular Multiplication and Exponentiation
- https://arxiv.org/abs/1202.6614
- Realization of a scalable Shor algorithm
- https://arxiv.org/pdf/1507.08852.pdf
- Wikipedia
- https://en.wikipedia.org/wiki/Shor\'s algorithm

To Do for Next Time

Qiskit has Toffoli gates and QFT built-in

- Show $2^{\text {nd }}$ bit on QFT
- Show how to eliminate most of the phase estimation qubits
- Kitaev QFT
- The u=7mod15 can then be run on a 5 qubit machine
- Demo Shor's Algorithm with Qiskit
- Deutsch-Jozsa Algorithm

IBM

End of Shor's Algorithm

